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Rayleigh–Bénard instability in nanofluids: 
a comprehensive review
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Abstract 

The extraordinary enhancement in heat transfer efficiency of nanofluids at extremely low volume fractions has 
attracted a lot of attention in identifying the governing mechanisms. The nanoscale effects, Brownian motion (ran-
dom motion of particles inside the base fluid) and thermophoresis (diffusion of particles due to temperature gradient) 
are found to be important slip mechanisms in nanofluids. Based on these findings, a set of partial differential equa-
tions for conservation laws for nanofluids was formed. Since then, a large number of mathematical studies on convec-
tive heat transfer in nanofluids became feasible. The present paper summarizes the studies pertaining to instability of 
a horizontal nanofluid layer under the impact of various parameters such as rotation, magnetic field, Hall currents and 
LTNE effects in both porous and non-porous medium. Initially, investigations were made using the model consider-
ing fixed initial and boundary conditions on the layer, gradually the model was revised in the light of more practical 
boundary conditions and recently it has been modified to get new and more interesting results. The exhaustive analy-
sis of instability problems is presented in the paper and prospects for future research are also identified.
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Introduction
With the advancement in industrial sector, effective 
cooling techniques have become the significant require-
ment for many industrial processes. Efficient transfer of 
energy in the form of heat from one body to another is 
commonly needed in most industries. There are many 
examples related to successful production and safety that 
hinge upon effective transfer of heat namely, thermal 
and nuclear power plant, refrigeration and air condition-
ing system, chemical and processing plants, electronic 
devices, space shuttles and rocket-launching vehicles. 
Often a fluid is chosen as a medium for transferring heat 
and consequently the mode of heat transfer is convec-
tion. The amount of heat transposition in convection 
is explained by a clear easy seeming connection, that is 
known as Newton’s law of cooling; q = h A ∆T, where q 

is the heat transfer rate, h is the convective heat trans-
fer coefficient, A is the surface area and ∆T is the tem-
perature that varies across which the transfer of thermal 
energy occurs. It has been always the pursuit of the ther-
mal engineers to maximize q for given ∆T or A which 
can be done by increasing h. Heat transfer coefficient is 
a complex function of the fluid property, velocity and 
surface geometry. From various fluid properties, ther-
mal conductivity influences the heat transfer coefficient 
in the most direct way as this is the property that regu-
lates the thermal transport at the micro-scale level. Heat 
transfer by conduction through solid is much larger than 
as compared to the conductive or convective heat trans-
fer through a fluid. For example, when copper is kept 
at room temperature, its conductivity is approximately 
700 times more than that of water and almost 3000-
folds greater in comparison to engine oil. Regular fluids 
like water, ethylene glycol and oil were used initially for 
such procedures but due to their restricted heat transfer 
properties, they were not able to serve the purpose com-
pletely. On the contrary, metal’s thermal conductivity is 
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very high in comparison to the regular fluids. These facts 
elicited and caught the eye of research workers to club 
both to generate a heat transfer mode which has attrib-
utes of fluid as well as metal. Keeping this perspective in 
consideration theoretical as well as practical work has 
been done considerably to enhance the thermal prop-
erties of fluids by suspending solid particles. Almost a 
century ago, Maxwell [1] initiated the theoretical work 
on thermal conductivity enhancement by addition of 
micrometer and millimetre sized particles and gradually 
nanoparticles were suspended in the fluids termed as the 
nanofluids [2].

Afterwards, nanofluids have emerged as an exciting 
area for advance research and development. The thermal 
conductivity enhancement in nanofluids was explored by 
Masuda et al. [3], Eastman et al. [4], Das et al. [5] and oth-
ers. They alleged an increment varying 10–30% in ther-
mal conductivity with the use of nanofluids at very low 
concentration. Buongiorno [6] formulated a mathemati-
cal model to study nanofluid instability phenomenon for 
the first time. He made an observation that the velocity 
of nanoparticles can be perceived as a sum of base fluid 
and relative (slip) velocities. To prosecute his research, 
he considered seven slip mechanisms; inactivity, magnus 
effect, Brownian motion, diffusiophoresis, thermophore-
sis, gravitational settling and fluid drainage. Throughout 
his investigation, he agreed that out of all the seven tech-
niques, Brownian diffusion and thermophoresis have a 
significant role in the absence of turbulent effects. Choi 
et al. [7] established that the highest thermal conductiv-
ity enhancement in fluids is with the addition of carbon 
nanotubes. A lot of analytical and experimental work has 
been done on thermal conductivity of nanofluids in the 
past [8–11]. Das and Choi [12], Ding et al. [13] and Das 
et al. [14] studied convective heat transfer in nanofluids 
extensively. Chen [15] derived heat conduction equations 
from Boltzmann equation. The presence of nanoparticles 
enhances the conductivity of base fluids [4, 7, 16] and rate 
of heat transfer [17–19]. A small amount of nanoparticle 
volume fractions (< 0.1%) leads to conductivity enhance-
ment up to 40% [8] and it rises with rise in temperature 
[5] and nanoparticles [16]. The results of Choi et  al. [7] 
established the unexpected non-linear character of meas-
ured thermal conductivity with nanotube loadings at low 
concentration while all theoretical studies concluded a 
linear relationship. Also, it was discovered that thermal 
conductivity strongly depends on temperature [5] and 
particle size [20]. Pak and Cho [21] considered alumin-
ium and titanium nanoparticles in circular tubes to study 
turbulent flow of nanofluids and found 30% increase in 
the value of Nusselt number in comparison to base fluid. 
Kleinstreuer et  al. [22] and Buongiorno and Hu [23] 
found the applications of nanofluids in drug delivery 

systems and advanced nuclear systems, respectively. 
Novel projected applications of nanofluids include sen-
sor and diagnostics that instantly detect chemical warfare 
agents in water or water-or food borne contamination; 
biomedical applications such as cooling medical devices, 
detect unhealthy substance in the blood, cancer treat-
ment, or drug delivery; and development of advanced 
technologies such as advanced vapour compression 
refrigeration systems. The present paper largely summa-
rizes the mathematical findings related to convective heat 
transfer in nanofluids under effects of rotation, magnetic 
field, hall currents and local thermal non-equilibrium in 
porous and non-porous medium. The partial differential 
equations for nanofluids based on conservation laws are 
studied by various researchers to establish significant and 
interesting results which are presented and analysed in 
the subsequent sections.

Instability of nanofluids
Thermal instability
A horizontal fluid layer is heated underside with main-
tained temperature difference across its boundaries leads 
to convection currents in the fluid. At the onset of insta-
bility, the temperature difference exceeds a certain value 
was observed first time by Bénard [24] in 1900. He found 
that the fluid at the bottom becomes lighter and rises up 
while the fluid density higher on the top makes the sys-
tem top heavy. Further, Bénard [25] carried out an exper-
iment using metallic plate and a thin non-volatile liquid 
layer which is maintained under constant temperature. 
He found that fluid layer was decomposed into number 
of cells at the onset of instability called Bénard cells.

Lord Rayleigh [26] explored the phenomenon ana-
lytically in detail. The work carried out by Rayleigh and 
Bénard to study thermal instability of fluids is known as 
Rayleigh Bénard convection. The schematic representa-
tion of Rayleigh–Bénard convection is shown in Fig.  1. 
They found that at the onset of convection, Rayleigh 
number, given by Ra = gβ d3�T/ν αf ; exceeds a cer-
tain critical value; where β is the volumetric coefficient 

Fig. 1  A schematic representation of Rayleigh–Bénard convection
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of thermal expansion, g is the acceleration due to grav-
ity, �T  is the temperature difference between bounda-
ries of the layer, αf  is the thermal diffusivity of fluid, d 
is depth of the layer, and ν is the kinematic viscosity. For 
the stabilizing viscous force, Ra parameter gives the force 
of destabilizing buoyancy. Chandra [27] explained that 
the instability of the fluid layer depends on its depth by 
conducting an experiment on the layer in air. Spiegel and 
Veronis [28] simplified the partial differential equations 
for the fluid flow by taking depth of the layer to be very 
small as compared to the height and equations for porous 
medium were derived by Joseph [29] using Boussinesq 
approximation. The thermal convection of a fluid layer 
using different assumptions of rotation and magnetic 
field has been considered in detail by Chandrasekhar 
[30]. Kim et al. [31] showed that heat capacity and den-
sity of nanoparticles influence the convective motions 
directly while conductivity has adverse impact. Hwang 
et  al. [32] found that the presence of alumina nanopar-
ticles enhances the stability of the base fluid which rises 
with the volume fraction of nanoparticles while decreases 
with the size of nanoparticles. Buongiorno [6] initiated 
the analytical treatment on nanofluid convection by 
deriving the conservation equations of nanofluids based 
on nano effects (Brownian and thermophoretic diffusion) 
as follows:

where v = (u, v,w) is the nanofluid velocity, φ is the nan-
oparticles volume fraction, ρp is the nanoparticle mass 
density, DB is the Brownian diffusion coefficient, DT is 
the thermophoretic diffusion coefficient, µ is the viscos-
ity of the fluid, t is the time, (ρc)f  is the heat capacity of 
fluid, (ρc)p is the heat capacity of nanoparticle, k is the 
thermal conductivity of the medium, T  is the tempera-
ture and the nanofluid’s density ρ is given by:

(1)∇ .v = 0
(

Continuity equation
)

,

(2)

∂φ

∂t
+ v.∇φ = ∇ .

[

DB∇φ + DT

∇T

T

]

(Nanoparticle conservation equation),

(3)

ρ

(

∂v

∂t
+ v.∇v

)

= −∇p+ µ∇2
v

+ ρg (Momentum equation),

(4)

(ρc)f

[

∂T

∂t
+ v.∇T

]

= (k∇2T )+ (ρc)p

[

DB∇φ.∇T + DT
∇T .∇T

T

]

(

Thermal Energy equation
)

.

where ρf  is the base-fluid’s density, T0 is the reference 
temperature and ρf 0 is the fluid density at reference tem-
perature. The partial differential Eqs. (1–5) along with 
momentum equation for different instability problems 
are considered to study the convective motions in the 
fluid. The momentum equation based on conservation 
of mass is redefined by researchers in each case to inves-
tigate the different hydrodynamic and hydromagnetic 
problems. The conservation equations were non-dimen-
sionalized to get new parameters and further the expres-
sion for thermal Rayleigh number was found to study 
the various instability problems. Tzou [33, 34] analyti-
cally solved the conservation equations of nanofluids for 
convective situations and established that the presence 
of nanoparticles hastens the onset of instability of the 
fluid layer significantly. Nield and Kuznetsov [35] con-
sidered the nanofluid layer heated from below as shown 
in Fig.  2 and same geometry was further used by many 
researchers to study problems. They solved the conser-
vation Eqs. (1–5) by using Galerkin method and normal 
mode technique for free-free, rigid-free and rigid-rigid 
boundaries.

For free-free boundaries, the expression of thermal Ray-
leigh number for stationary motions was obtained by Nield 
and Kuznetsov [35] as:

where Rn, Le, Na represent the concentration Ray-
leigh number, the Lewis number and the modified dif-
fusivity ratio, respectively which are non-dimensional 
parameters. This result is complementary to the result 
of Tzou [21, 22] as the reduction of critical Rayleigh 
number for bottom-heavy case was established [21, 22] 
whereas Nield and Kuznetsov [35] claimed the increase 
in the value of the critical Rayleigh number for non-
oscillatory instability. Also, Nield and Kuznetsov [35] 
presented the impact of nanofluid parameters and con-
cluded that Rn, Le, Na destabilize the system for bottom 
heavy case. Yadav et al. [36] also performed the analyti-
cally investigation on thermal instability of nanofluids by 
carrying the conservation Eqs.  (1–5). In addition to the 
nanofluid parameters they also examined the impact of 
temperature gradient and found that temperature gradi-
ent postpones the convective motions and nano-effects 
destabilize the layer significantly. Further, the nanofluid 
convection problem was revisited by Sharma and Gupta 
[37] to explore the problem in detail without combining 
the terms at any stage and the expression of thermal Ray-
leigh number was found in terms of physical properties 

(5)
ρ = φρp + (1− φ)ρf

∼= φρp + (1− φ)
{

ρf 0(1− β(T − T0))
}

.

(6)Ra =
(

π2 + α2
)3

α2
− Rn[Le + Na],
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of nanofluids. Recently, both experimental and analytical 
studies were carried out by Kumar et al. [38] to investi-
gate Rayleigh–Bénard instability in nanofluids. Silver 
and selenium nanoparticles were synthesized using plant 
extract and base fluid was taken to be water to study the 
onset of convection. It was observed that the presence of 
nanoparticles delay the onset of instability in the fluid. 
A few additional complexities crop up due to the inter-
actions between fluid and porous material. In the past 
investigation of thermal instability of fluids in porous 
medium became prominent due to its large applications. 
The impact of strong magnetic field of earth on the sta-
bility of this flow is a key area of interest in geophysics. 
It becomes more prominent while studying earth’s core 
where earth’s mantle conducts like a porous medium 
comprising of conducting fluids. A great amount of work 
on the convection problem for Newtonian/non-New-
tonian fluids in a porous medium has been accounted 
by Lapwood [39], Wooding [40], MacDonald et  al. [41], 
Ingham and Pop [42], Vafai and Hadim [43], and Nield 
and Bejan [44]. Owing to the applications of convection 
in porous media and keeping in mind the thermal prop-
erties of nanofluids, convection problem for nanofluids 
in porous medium has also been given due attention in 
the research work. The investigations in porous medium 
were started with Darcy model and further it has been 
extended to develop as Darcy–Brinkman model. By tak-
ing Darcy resistance term into consideration, Lapwood 
[39] and Wooding [40] examined the stability of a flow 
of the fluid saturating porous medium. Following Ray-
leigh’s procedure, they have shown that the value of criti-
cal Rayleigh number for the convective flow in porous 
medium is 4π2 . A detailed and thorough review of the 
work related to convection of fluids in porous medium 
has been published in a book by Nield and Bejan [44]. 
Lapwood problem for nanofluids was solved by Nield 

and Kuznetsov [45] using Darcy model and Kuznetsov 
and Nield [46] further extended the problem in porous 
medium using Brinkman model. In Darcy model, porous 
medium is assumed to have porosity ε and permeability 
K. The Darcy velocity is denoted by vD = εv . Then the 
conservation Eqs.  (1–5) for Darcy model were modified 
as [45]:

On solving Eqs. (7–10), Nield and Kuznetsov [45] 
obtained an expression of thermal Rayleigh number in 
porous medium as:

and concluded that Rn, Le, Na destabilize the system of 
nanofluid layer for bottom heavy distribution of nano-
particles whereas porosity stabilizes it. It was found that 
the critical thermal Rayleigh number has a substantial 
change in its value depending on whether the basic nano-
particle distribution is top-heavy or bottom-heavy, by the 
presence of the nanoparticles. They claimed that oscilla-
tory instability is possible only for bottom-heavy nano-
particle distribution. Kuznetsov and Nield [46] further 
extended their work in porous medium by incorporat-
ing Brinkman model. For Brinkman model conservation 
equation of momentum changes to:

where µ̃ is the effective viscosity. Thus, the set of Eqs. (7, 
8, 10 and 12) constitutes the governing equations of the 
system for Brinkman model. Kuznetov and Nield [46] 
processed this system for analysis by using normal mode 
technique and obtained the expression of thermal Ray-
leigh number as:

(7)∇ .
vD

ε
= 0

(

Continuity equation
)

,

(8)

∂φ

∂t
+

vD

ε
.∇φ = ∇ .

[

DB∇φ + DT

∇T

T

]

(Nanoparticle conservation equation),

(9)
0 = −∇p+ µ∇2vD − µ

K
vD + ρg (Momentum equation),

(10)

(ρc)f

[

∂T

∂t
+ vD.∇T

]

= (k∇2T )+ ε(ρc)p
[

DB∇φ.∇T + DT
∇T .∇T

T

]

(

Thermal Energy equation
)

.

(11)Ra =
(

π2 + α2
)2

α2
− Rn

[

Le

ε
+ Na

]

,

(12)
ρf

ε

∂v

∂t
= −∇p+ µ̃∇2vD −

µ

K
vD + ρg ,

Fig.2  Geometry for Rayleigh–Bénard convection problems
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where Da is Darcy number which got introduced in 
Brinkman model. They established that for a typical 
nanofluid (having larger Lewis number) buoyancy forces 
along with the conservation of nanoparticles has a pri-
marily effect on the system while the concentration of 
nanoparticles has a second-order effect. They found the 
critical value of thermal Rayleigh number with Darcy 
number effect and concluded that for large values of 
Darcy number critical Rayleigh number is 3% greater 
than the classical result of Chandrasekhar while in the 
absence of Darcy number it is 11% greater than the clas-
sical result. Chand and Rana [47] also examined the 
oscillating convection of nanofluids in porous medium 
and questioned the validity of principle of exchange of 
stability for the problem and also derived the condition of 
non-existence of oscillatory motions.

Thermosolutal instability
Melvin Stern [48] was first to consider the case of linear 
opposing gradients of two properties between horizon-
tal boundaries at fixed concentrations. He revealed that 
the interesting effect in binary convection is due to sharp 
difference between diffusivities of heat and solute. Since 
then many more researchers, including Veronis [49] and 
Nield [50] have developed the idea. The problem of ther-
mosolutal convection in a layer of fluid under a stable sol-
ute gradient which is heated from below has been studied 
by Veronis [49]. Linear calculations for the problem have 
been made for a variety of boundary conditions by Nield 
[50]. It has shown by Turner [51, 52] that the convec-
tive motions depend on the component having higher or 
lower diffusivity leading to driving forces. When lighter 
fluid layer is placed over denser of different diffusivi-
ties, two types of convective motions crop up; diffusive 
and finger configurations. The excellent review works 
on double diffusive system were given by Huppert and 
Turner [53] and Turner [54]. The interference of multi-
components transport processes produce the cross-dif-
fusion (Soret and Dufour) effects. The mass flux due to 
temperature gradient is defined as Soret effect and the 
Dufour effect refers to heat flux due to solute gradient. 
Insignificant role of the Soret and Dufour effects allows 
ignoring their presence in simple models of coupled heat 
and mass transfer [44]. Mc Dougall [55] has made an in-
depth study of double diffusive convection considering 
both the solutal effects (Soret and Dufour). The existence 
of these ideas has observed in the field of oceanography 
and the role of theoreticians, laboratory experiments and 
sea-going oceanographers became vital to explore this 

(13)

Ra =
Da

(

π2 + α2
)3 +

(

π2 + α2
)2

α2
− Rn

[

Le

ε
+ Na

]

,

process. The field has also broadened considerably, with 
new applications becoming apparent in addition to those 
outlined by Turner [52]. The double-diffusive concepts 
are mainly applied in large-scale engineering applications 
and can be observed in solar ponds, shallow artificial 
lakes etc. A direct analogue of thermosolutal convec-
tion has been used to describe the properties of large 
stars with a helium-rich core which is heated from below. 
Spiegel [56] has shown that the helium/hydrogen ratio 
has significant impact on density gradient and can lim-
its the helium transport by double diffusive convection. 
Another example of double diffusive convection process 
is solidification of metals.

Kuznetsov and Nield [57] initiated the mathematical 
work on double diffusive instability in a nanofluid layer 
saturating porous medium under Darcy model. They 
classified the investigated problem as triple diffusion-
type process due to involvement of the heat, the nano-
particles and the solute. The complex equations were 
simplified by analytical expressions for non-oscillatory 
and oscillatory cases. The results predicted that the non-
oscillatory mode is expected for top heavy distribution 
of nanoparticles, a situation which corresponds to the 
fact that the existence of oscillations requires two of the 
buoyancy forces acting in opposite directions. Further, 
Kuznetsov and Nield [58] studied the companion paper 
in non-porous medium. The momentum, thermal energy 
and solute conservation equations were redefined for a 
horizontal binary nanofluid layer which is heated and sol-
uted from below as:

where ρ = φρp + (1− φ)ρf
∼= φρp + (1− φ)

{

ρf 0(1−
β(T − T0)− β ′(C − C0)

)}

,

where β ′ is the solutal volumetric coefficient, DS is the 
diffusivity of solute, DTC is the Dufour type diffusiv-
ity, DCT is the Soret type diffusivity and C is the solute 
concentration. The one term Galerkin approximation 
method was used to analyze the stability and the expres-
sion for the Rayleigh number was found as

(14)

ρ

(

∂v

∂t
+ v.∇v

)

= −∇p+ µ∇2
v

+ ρg (Momentum equation),

(15)

(ρc)f

[

∂T

∂t
+ v.∇T

]

= (k∇2T )+ (ρc)p[DB∇φ.∇T

+DT
∇T .∇T

T

]

+ ρcDTC∇2C
(

Thermal energy equation
)

,

(16)

∂C

∂t
+ v.∇C = DS∇

2
C + DCT∇

2
T

(Solute conservation equation),
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The expression contains four additional nano-dimen-
sional solute numbers; NCT Soret parameter, NTC Dufour 
parameter, LS Solute Lewis number and Rs solute Rayleigh 
number. The stability boundaries were approximated using 
single term Galerkin approximation which produced the 
critical Rayleigh number about 5% higher than the true 
value. The analytical results for oscillatory instability were 
established by simplifying complex expressions with the 
assumptions of large Prandtl number and large nanopar-
ticle Lewis number. Same problem of binary nanofluid 
convection was revisited by Gupta et al. [59] to show the 
existence of oscillatory motions. They analyzed the impact 
of different parameters on onset of thermosolutal convec-
tion in a nanofluid layer in detail using the software Math-
ematica. Further, Yadav et al. [60] investigated the problem 
of binary nanofluid layer using a Darcy–Brinkman model. 
The numerical results on the onset of convection were 
derived using alumina-water nanofluid. Thermosolutal 
natural instability boundary layer nanofluid flow past a 
vertical plate was investigated by Kuznetsov and Nield 
[61]. In this paper, numerical calculations were performed 
in order to obtain the terms. Agarwal et  al. [62] studied 
non-linear convection in binary nanofluid layer saturat-
ing porous medium in terms of Nusselt number and found 
that initially the effect of time on Nusselt number is oscil-
latory while it becomes steady as the time increases. Yadav 
et al. [63] explored the thermal conductivity and viscosity 
variations effects on binary nanofluid convection in porous 
medium. Further, Umavathi [64] conducted the studies to 
analyze the impact of variable viscosity and conductivity on 
linear and nonlinear stability analysis of binary convection 
in a porous medium layer saturated in a Maxwell nanofluid.

In all the above studies it was assumed that nanoparti-
cle flux can be controlled across the boundary as the tem-
perature thereat. Further, it turned out that these boundary 
conditions are hard to achieve physically so need was felt 
for more realistic boundary conditions. Nield and Kuznet-
sov [65, 66] came out with new conditions on boundaries 
of the layer and assumed that nanoparticle flux across the 
boundaries is zero written as (which is more realistic than 
top heavy/bottom heavy configuration of nanoparticles).

The expression of Rayleigh number for revised bound-
ary conditions was found to be:

(17)

Ra = (1− NCTNTCLS)

(1− LSNTC)

(

(

π2 + α2
)3

α2
+ Le Rn

)

− (1− NCT )

(1− LSNTC)
Rs − NaRn.

(18)DB
∂φ

∂z
+

DT

T0

∂T

∂z
= 0 at z = 0, d.

The concentration Rayleigh number was involved with 
a new scaling and a major difference was that the sign of 
concentration Rayleigh number cannot be negative and 
hence oscillatory convection was ruled out, in contrast 
to the conclusion in Nield and Kuznetsov [35] and Nield 
and Kuznetsov [45]. Realizing the fact that original and 
revised models mentioned so far were not sensitive to the 
conductivity of nanoparticles; Sharma et al. [67] modified 
the model by assuming initial constant nanoparticle vol-
ume fraction in the fluid layer and derived the expression 
for Rayleigh number (in the absence of solute param-
eters) as:

which was obtained to be independent of Lewis num-
ber and hence established the sensitivity of Ra for both 
density and conductivity of nanoparticles. It was found 
that density of nanoparticles hastens the onset of con-
vection in the fluid whereas increase in conductiv-
ity delays the same. The stability pattern followed by 
non-metals is: alumina–water > silica–water >  > copper 
oxide–water > titanium oxide–water and metals is: alu-
minium–water > copper–water > silver–water >  > iron–
water are shown in Figs 3 and 4 [67].

Effects of different parameters on instability 
of nanofluids
Effect of rotation
When a fluid spreads under gravity in a rotating system, 
motions normal to the rotation vector induce Coriolis 
forces that tend to oppose the spreading. In the absence 
of boundaries intersecting isopotential surfaces and of 
instability or viscous dissipation, the flow approaches 
a state of geotropic equilibrium in which buoyancy 
and Coriolis forces are in balance. The rotation has an 
important impact on the onset of convective motions 
in the fluid. Such problem has an application in ocean-
ography, limnology and engineering processes where 
thermal instability of rotating fluid is needed to exam-
ine. It defines some new parameters in fluid dynam-
ics, and its outcomes are surprising, like the function 
of viscosity is reversed [30]. Impact of rotation on the 
system of a nanofluid layer has been analyzed by Yadav 
et  al. [68] and Chand [69]. For non-porous medium 
conservation equation of momentum in the presence of 
vertical rotation was defined as [68, 69].

(19)Ra =
(

π2 + α2
)3

α2
− Rn Na[Le + 1].

(20)Ra =
(

π2 + α2
)3

α2
− Rn Na,
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where � = (0, 0,�) is the angular velocity and the term 
2ρ(v ×�) represents the Coriolis force term which was 
introduced due to the presence of rotation while for 
porous medium momentum equation due to rotation 
was modified as [70–72].

Chand [69] considered the top-heavy configuration 
of nanoparticles in non-porous medium and performed 
the numerical calculations by using Normal mode 
technique. The obtained expression of thermal Ray-
leigh number for stationary mode of convection was 
obtained as:

where Ta is Taylor number representing the effect of 
rotation. He claimed that rotating nanofluid is more sta-
ble than non-rotating layer. Also, in the stationary con-
vection it is found that Taylor number Ta (rotation), 
Lewis number Le, have stabilizing effect on the system 
while concentration Rayleigh number Rn and modified 
diffusivity ratio Na have destabilizing effect on the sys-
tem. Bhadauria and Agarwal [70] considered Brinkman 
model to investigate the instability of nanofluid layer in 

(21)

ρ

(

∂v

∂t
+ v.∇v

)

= −∇p+ µ∇2v + 2ρ(v ×�)+ ρg ,

(22)

0 =−∇p+ µ̃∇2
vD −

µ

K
vD

+
2

δ
(vD ×�)+ ρg

(

Darcy model
)

,

(23)

ρf

ε

∂vD

∂t
=−∇p+ µ̃∇2

vD −
µ

K
vD +

2

δ
(vD ×�)

+ ρg
(

Darcy Brinkman model
)

.

(24)Ra =
(

π2 + α2
)3 + Taπ2

α2
− Rn[Le + Na],

porous medium and obtained the expression for bottom 
heavy configuration of nanoparticles as:

where J2 = π2 + α2, and Da is Darcy number which got 
introduced due to Brinkman model and was found to 
have stabilizing effect for the stationary mode of convec-
tion along with other nanofluid parameters effect except 
Na which has a destabilizing effect on the system. They 
also found the expression of Rayleigh number for oscil-
latory motions (bottom heavy distribution of nano-
particles). Bhadauria and Agarwal [70] also dealt with 
nonlinear study of instability of rotating nanofluid layer 
in porous medium. With a Brinkman model in porous 
medium, they used minimal representation of the trun-
cated Fourier series analysis for non-linear. In their anal-
ysis, Nusselt number got introduced that represent the 
rate of heat transfer and found that with the rise of Ray-
leigh number, the Nusselt number also rises, thus the rate 
of heat transfer increases. But for large values of Rayleigh 
number, the Nusselt number tends to a fixed value and 
becomes constant thus the rate of heat transfer becomes 
constant. They also showed that rate of mass transfer of 
nanoparticles increases with the increase of Darcy num-
ber and modified diffusivity ratio. Further, Chand and 
Rana [71] also employed the Brinkman model but for top 
heavy configuration of nanoparticles and obtained Ra as:

They found that porosity and concentration Rayleigh 
number decrease the stability of the system while Darcy 

(25)

Ra =
(

1+ DaJ2
)2
J4 + Taπ2J2

α2
(

1+ DaJ2
) + Rn

[

Le

ε
− Na

]

,

(26)

Ra =
Da

(

π2 + α2
)3 +

(

π2 + α2
)2

α2

+
1

α2

Taπ2
(

π2 + α2
)

Da
(

π2 + α2
)

+ 1
−

(

Na+ Le

ε

)

Rn.

Fig. 3  Effect of non-metals on Rayleigh number [67]
Fig. 4  Effect of metals on Rayleigh number [67]
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number was found to have dual character both stabiliz-
ing/destabilizing effect for the stationary mode of con-
vection depending on the value of Taylor number. In 
the absence of rotation, the Darcy number has stabiliz-
ing effect on the system. Agarwal et al. [72] used Darcy 
model to investigate the effect of rotation on a nano-
fluid layer in anistropic porous medium. Their outcomes 
were that bottom-heavy and top-heavy arrangement 
favour oscillatory and stationary convections, respec-
tively. Rotation aids either of the two in this trend. For 
both the arrangements, rotation parameter (Taylor num-
ber) gives an enhancement in the stability of the system. 
Yadav et al. [73] solved the thermal instability problem of 
rotating nanofluid layer numerically. Six-term Galerkin 
method has been adopted to solve the Eigen-value equa-
tion for rigid-free and rigid-rigid boundary conditions. 
The results for two different types of boundary condi-
tions were compared and found that system with both 
rigid boundaries is more stable than rigid-free bounda-
ries at small Taylor number domain however stress-free 
boundaries offer more stability than rigid boundaries 
when its values are higher. Rana et al. [74] and Rana and 
Agarwal [75] investigated the effect of rotation on dou-
ble diffusive nanofluid convection saturating a porous 
medium. The stabilizing impact of rotation parameter 
was established in their work. Agarwal [76], Rana and 
Chand [77] and Yadav et  al. [78] re-explored the prob-
lem of convective motions in a nanofluid layer subjected 
to rotation with new boundary conditions (nanoparticle 
flux is zero across the boundaries) for porous and non-
porous medium. Yadav et  al. [78] solved the eigenvalue 
problem numerically using 6-term Galerkin method for 
water based nanofluid with alumina and copper nano-
particles. Stability of alumina–water nanofluid was com-
pared with that copper water nanofluid and observed 
that with these new boundary conditions alumina–water 
nanofluid shows more destabilizing effect under the con-
stant nanoparticle boundary conditions, while reverse 
trend was observed for copper–water nanofluid. This is 
because the modified diffusivity ratio has a significant 
effect for zero nanoparticles flux on boundaries and its 
value is higher for alumina–water nanofluid than cop-
per–water nanofluid. The stabilizing impact of rotation 
on binary nanofluid convection was analyzed by Sharma 
et  al. [79]. Oscillatory motions come into existence for 
bottom heavy arrangement of nanoparticles in the fluid 
layer saturating porous medium. The stabilizing effect of 
Taylor number for stationary as well as oscillatory mode 
of convection is shown in Fig. 5 and mode of convection 
is found to be oscillatory [80].

Further, the onset of thermosolutal convection in a 
rotating porous nanofluid layer was investigated in many 
works [81, 82] using Darcy and Darcy Brinkman model.

Effect of magnetic field
When an electrically conducting fluid comes under 
the influence of a uniform magnetic field, two kind of 
electromagnetic effects are observed within the fluid. 
Firstly, the currents are induced in the fluid due to its 
motion across the magnetic field which tends to modify 
the existing fields. Secondly, electric current transverse 
to the magnetic lines of forces within the fluid exert 
forces that adds up to the existing fields. This twofold 
interaction among the fluid motions and magnetic 
fields causing unexpected patterns of behaviour are 
depicted and well contained in Maxwell’s equations. 
Hydrodynamic equations are modified in more suitable 
way by considering Maxwell’s equations [30]. Thomson 
[83] modified the theory of slow thermal convection 
proposed by Rayleigh [26] and Jeffrey [84] by adding 
the Lorentz force which is induced by the interaction of 
magnetic field and conducting fluid. The result of such 
interaction has also been concluded by Fermi [85] and 
Alfvén [86]. Riley [87] carried out further investigation 
on Rayleigh–Bénard convection under the influence 
of vertical magnetic field called magneto-convection. 
Ghasemi et al. [88] and Hamada et al. [89] considered 
water based nanofluids with copper, alumina and sil-
ver nanoparticles, to investigate thermal instability for 
numerical computations. Ghasemi et  al. [88] investi-
gated the impact of both magnetic field and nanofluids 
on natural convection in square cavity while Mahmoudi 
et  al. [90] investigated the same impact for rectangu-
lar cavity. They argued that the magnetic field resulted 
in the decrease of convective circulating flows within 
the enclosures which resulted in the reduction of heat 
transfer rate. The work (magneto-convection) has 
contributed in the field of engineering in the form of 
various applications such as crystal growth in liquids, 
cooling of rods in nuclear reactor, cooling of micro-
chips in electronics and microelectronic devices, solar 
technology etc. By conceptualizing the utility aspect 
of applying magnetic field, Heris et al. [91] studied the 
impact of both magnetic field and nanofluid on two 
phases closed thermosyphon and found that with the 
increase in magnetic field strength as well as nanopar-
ticle concentration; thermal efficiency of thermosy-
phon has significantly increased. Nemati et  al. [92] 
in their theoretical study investigated the impact of 
magnetic field on nanofluid convection in a rectangu-
lar cavity by considering the Lattice Boltzman model. 
They concluded that increase in magnetic field reduces 
the convective heat transfer rate while conductive heat 
transfer rate becomes dominant. Gupta et  al. [93] and 
Yadav et al. [94] considered the magneto-convection of 
a nanofluid layer for bottom heavy and top-heavy dis-
tributions of nanoparticles, respectively. By applying 
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magnetic field on a nanofluid layer, Lorentz force is 
induced which combines with the element of thermal 
buoyancy. Thus, the system of conservation equations 
in the presence of magnetic field includes Eqs. (1–3) 
along with,

and Maxwell’s equations

where h = (0, 0, h) is the magnetic field that is applied 
in vertical direction and µe

4π (∇ × h)×H represents the 
Lorentz force term which was introduced due to applied 
magnetic field. System of Eqs. (1–3 and 27–29) were ana-
lyzed to examine the effect of magnetic field for bottom 
heavy distribution of nanoparticles and the expression 
for stationary convection [93, 94] was obtained as:

Expression for oscillatory convection was also found. 
Due to the presence of magnetic field Chandrasekhar 
number Q came into existence. The authors found that 
Chandrasekhar number delays the onset of convection 
and the oscillatory mode of heat transfer was established 
for bottom heavy distribution whereas it was found to be 
through stationary convection for top heavy arrangement 
of nanoparticles. Shaw and Sibanda [95] used Brinkman 
model to investigate the hydromagnetic instability of 
a nanofluid layer in Darcy porous medium using con-
vective boundary condition. It has been shown that for 
the case of stationary convection the critical Rayleigh 

(27)

ρ

(

∂v

∂t
+ v.∇v

)

= −∇p+ µ∇2v + ρg +
µe

4π
(∇ × h)×H ,

(28)
dh

dt
= (H .∇)v + η∇2h,

(29)∇ .h = 0.

(30)

Ra =
(

π2 + α2
)

α2

[

(

π2 + α2
)2

+ Qπ2

]

+ Rn[Le − Na].

number increases with the increase of Darcy number and 
the magnetic field parameter. Gupta et al. [96] and Ahuja 
et al. [97, 98] carried out their research of hydromagnetic 
stability by comparing thermal instabilities of Al2O3–
water and CuO–water nanofluids in non-porous medium 
and in porous medium. They interpreted that magnetic 
field parameter stabilizes the system for all types of nano-
fluids. Further, nanofluid with alumina nanoparticles is 
found to exhibit more stability than the nanofluid con-
taining copper-oxide nanoparticles. In porous medium, 
analysis is done for three different boundaries free-free, 
rigid-free and rigid-rigid using Brinkman model. For 
free-free boundaries, the expression of Rayleigh number 
was obtained as [98]:

In the presence of magnetic field stability of Cu–water 
nanofluid and Ag–water nanofluid was compared and it 
was found that Cu–water nanofluid is more stable than 
Ag–water nanofluid for top heavy configuration of nano-
particles. The system with both-rigid boundaries is found 
to have more stability as compared to rigid-free bounda-
ries which in turn are more stable than free-free bounda-
ries. In porous medium they also examined the effect of 
volume fraction of nanoparticles and temperature differ-
ence across the boundaries on stability of the system and 
found that temperature difference stabilizes the nano-
fluid layer appreciably, whereas the volume fraction of 
nanoparticles and porosity destabilize the layer. Chand 
and Rana [99] found the solution of the nanofluid layer 
for more realistic boundary conditions in the presence of 
uniform vertical magnetic field in a porous medium. They 
derived the stability criterion for stationary and oscil-
latory convection in the presence of magnetic field and 
depicted that oscillatory motions do not occur. Sharma 
et al. [100] and Gupta et al. [101] established the stabiliz-
ing impact of vertical magnetic field on binary nanofluid 
convection in a horizontal fluid layer in porous and non-
porous medium, respectively. The stabilizing influence of 
magnetic field parameter is shown in Fig. 6 for both sta-
tionary and oscillatory convection [101].

(31)

Ra =
1

α2

[

(

π2 + α2
)2

+
Qπ2

ε

(

π2 + α2
)

]

+ Rn

[

Le

ε
− Na

]

for Darcy model,

(32)

Ra =
1

α2

[

Da

(

π2 + α2

)3

+
(

π2 + α2

)2

+
Qπ2

ε

(

π2 + α2

)

]

− Rn

[

Le

ε
+ NA

]

for Brinkman model.

Fig. 5  Effect of rotation parameter on Rayleigh number [80]
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Effect of Hall currents
When an applied electric and magnetic field are both 
perpendicular to each other, the current does not flow in 
the direction of electric field. So, when an electric current 
pass through a conducting fluid in the presence of mag-
netic field, transverse force is exerted by the magnetic 
field which produces a measurable voltage across the two 
sides of a conducting fluid. The presence of this meas-
urable transverse voltage under the effect of magnetic 
field due to which electric current tends to flow across 
an electric field is called Hall effect. Thus, Lorentz forces 
acting on the charges in the current induced the Hall 
effect. Gupta [102] studied the effect of Hall currents and 
described that these currents hasten the onset of thermal 
convection under the presence of uniform magnetic field. 
A considerable work has been done by many research-
ers in the past [103–105] on the effects of magnetic field/
Hall currents on Newtonian/non-Newtonian (viscoelas-
tic) fluids, and associated problems. It was shown that a 
vertical component of vorticity induced by Hall currents 
is one of the possible reasons for destabilizing effect of 
Hall currents. Gupta and Sharma [106] further studied 
the impact of Hall currents and rotation on the double-
diffusive convection of Rivlin–Erickson elastic–viscous 
fluid. Gupta et al. [107, 108] considered the Hall effect on 
thermal stability of a nanofluid layer in porous and non-
porous medium. Due to the presence of Hall currents, 
conservation equations in non-porous medium were 
modified as:

along with Maxwell equation
(33)

ρ

(

∂v

∂t
+ v.∇v

)

= −∇p+ µ∇2v + ρg +
µe

4π
(∇ × h)×H ,

(34)

dh

dt
= (H .∇)v + η∇2h−

1

4πNe
∇ × [(∇ × h)×H ],

Thus Eqs. (1, 2, 4) along with (33–35) form the system 
of conservation equations in the presence of Hall cur-
rents. For bottom heavy distribution of nanoparticles, 
Gupta et al. [107, 108] got the expression

where additional Hall current parameter M was found to 
exist. Effect of Hall currents is to hasten the convection 
(Fig. 7) while magnetic field delays it. It was also estab-
lished that stability of alumina is more than copper nano-
particles in water in the presence of Hall currents (Fig. 8). 
The mode of heat transfer is found to be through station-
ary convection for top heavy configuration of nanoparti-
cles. Further, for porous medium velocity is replaced by 
Darcy velocity in the Eqs. (1, 2, 4) alongwith (33–35) to 
get the conservation equations of nanofluid in the pres-
ence of Hall currents for porous medium. Yadav and 
Lee [109] and Yadav et al. [110] modified the convective 
boundary conditions and presented a more realistic feasi-
ble system of nanofluid layer in the presence of Hall cur-
rents for non-porous and porous medium, respectively. 
They examined the stability of a nanofluid layer with 
large magnetic fields and obtained the expression of Ray-
leigh number [110] in porous medium as:

(35)∇ .h = 0.

(36)

Ra =
(

π2 + α2
)3

α2
+ Rn(Le − Na)

+
Qπ2

(

π2 + α2
)

[

(

π2 + α2
)2 + Qπ2

]

α2

[

Mπ2
(

π2 + α2
)

+
(

π2 + α2
)2 + Qπ2

] ,

(37)

Ra =
(

π2 + α2
)2

α4ε2 + α2
(

ε2 +M2
)

π2

[{

α2ε2 + α2

(

ε2 +M
2

)

π2

}

×
{

1+ Da

(

π2 + α2

)

+ επ2
Q

}]

−
(

1

ε
−

1

Le

)

RnLe Na.

Fig. 6  Effect of magnetic field parameter on Rayleigh number [101]

Fig. 7  Effect of Hall current parameter on Rayleigh number [107]
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According to their result, for small values of the Hall 
current parameter, it has a destabilizing effect on the 
system while for its large values no significant effect is 
observed on the system. On the same way, magnetic 
field parameter is found to delay the onset of convection 
appreciably, for small values of the Hall current param-
eter while for large values of Hall current parameter it 
has no effect on the system. They also observed that the 
size of convection cells depends on the magnetic field 
parameter and the Hall current parameter for small val-
ues of the Hall current parameter while for large values 
of the Hall current parameter roll of magnetic field and 
Hall current become insignificant. The conditions for the 
instability through stationary convection is also found 
and showed that the oscillatory convection cannot occur 
with the new boundary conditions. In porous medium, 
Hall current parameter and nanoparticles parameters 
are found to accelerate the onset of convection, while 
the Darcy number, magnetic Darcy number and porosity 
parameter delay the onset of instability in the fluid layer.

Effect of LTNE
All the above-mentioned studies are based on local ther-
mal equilibrium (LTE) where temperature gradient is 
assumed to be negligible between the fluid and particle 
phases but Vadasz [111, 112] clarified that there is always 
a thermal lagging among the fluid and particle phases if 
the thermal conductivity is increased. Kuznetsov and 
Nield [113, 114] and Nield and Kuznetsov [115] explored 
the impact of this thermal lagging named as local ther-
mal non-equilibrium model (LTNE) for the thermal 
instability of a nanofluid layer for both porous and non-
porous medium. In non-porous medium to account the 

influence of thermally non-equilibrium phases two tem-
perature model has been used which was described by 
Nield and Kuznetsov [115] as follows:

Due to LTNE effects additional variables 
kf , kp,Tf ,Tp, hfp got introduced in which kf , kp denote 
respectively the effective thermal conductivity of the fluid 
and particle phase, Tf ,Tp denote the temperature of fluid 
and particle phase and hfp is the interphase heat transfer 
coefficient between the fluid/particle phases. While for 
porous medium a three-temperature model suited well 
to analyse the thermal lagging among fluid phase, particle 
phase and solid matrix phase [113] was given as:

Thus, for non-porous medium Eqs. (38, 39) along with 
Eqs. (1–3) form a system of conservation equations for 
LTNE model while for porous medium set of Eqs. (7–9) 
along with (40–42) constitute the system of equations. 
Expression of Rayleigh number [115] for non porous 
medium was:

(38)

(ρc)f

[

∂Tf

∂t
+ v.∇Tf

]

=(kf ∇2Tf )+
hfp

1− φ0

(

Tp − Tf

)

+ (ρc)p

[

DB∇φ.∇T + DT
∇T .∇T

T

]

,

(39)

φ0(ρc)p

[

∂Tp

∂t
+ v.∇Tp

]

= φ0(kp∇2Tp)+ hfp
(

Tf − Tp

)

.

(40)

ε(1− φ0)(ρc)f

[

∂Tf

∂t
+ vD

ε
.∇Tf

]

= ε(1− φ0)

(kf ∇2Tf )+ ε(1− φ0)(ρc)p

[

DB∇φ.∇T + DT
∇T .∇T

T

]

+ hfp
(

Tp − Tf

)

+ hfs
(

Ts − Tf

)

,

(41)

εφ0(ρc)p

[

∂Tp

∂t
+

vD

ε
.∇Tp

]

= εφ0(kp∇2Tp)+ hfp
(

Tf − Tp

)

,

(42)

(1− ε)(ρc)s

[

∂Ts

∂t

]

= (1− ε)(ks∇2Ts)+ hfs
(

Tf − Ts

)

,

(43)

Ra

[

1+
γ + 1

δ

NH

π2 + α2

]

+ Rn

[

Le + NA+
(γ + δ)Le + (γ + 1)NA

δ

NH

π2 + α2

]

=

(

π2
+ α2

)3

α2

[

1+
γ + δ

δ

NH

π2 + α2

]

,

Fig. 8  Effect of alumina and copper nanoparticles on Rayleigh 
number in the presence of Hall effects [108]
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where additional parameters Nield number, NH, modi-
fied thermal capacity ratio γ and modified thermal dif-
fusivity δ ratio came into existence in the process of non 
dimensionalization due to LTNE model while for porous 
medium these parameters came into existence for par-
ticle phase and solid phase separately and effect of all 
these parameters is also analysed. Here, modified ther-
mal capacity ratio γ, and modified thermal diffusivity δ 
increases the stability of the system while Nield number 
NH tends to reduce it. They found that impact of LTNE 
is significant in case of non-oscillatory stability but insig-
nificant for typical dilute nanofluids. Further, the thermal 
instability in porous medium for both linear and non-lin-
ear conditions using LTNE model is investigated by Bha-
dauria and Agarwal [116]. Convection in LTNE is found 
to set earlier as compared to LTE. For linear conditions 
Bhadauria and Agarwal [116] obtained the expression as:

where J2 = π2 + α2
c and αc = π

/√
2, NHP, NHS are 

interface heat transfer parameters and γp, γs are modified 
thermal capacity ratios and  εp, εs are modified thermal 
capacity ratios. With the increase in concentration Ray-
leigh number, Nield number and modified diffusivity 
ratio, the decrease in Nusselt number is observed thus 
diminishing the heat transfer rate. While it increases on 
increasing the values of modified thermal capacity ratio, 
thus the rate of heat transfer is increased. On the other 
hand, for solid-matrix phase an unsteady rate of heat 
transfer is observed initially and with the passage of time 
it approaches to a constant value. Agarwal and Bhadauria 
[117] studied the thermal instability of a rotating nano-
fluid layer in non-equilibrium conditions. In addition to 
the above results, they noted a slight variation in critical 
Rayleigh number for small values of nanoparticle concen-
tration Rayleigh number, Lewis number and Taylor’s 
number and then rises steadily with an increase in the 
value of these parameters whereas for modified diffusivity 
ratio, an opposite trend was observed. Ahuja and Gupta 
[118] examined the MHD effects of rotating nanofluid 
layer using LTNE model. One term Galerkin approxima-
tion has been used to analyse the stability. For top heavy 
distribution of nanoparticles they got the expression as:

(44)

Ra =
ε

α2
c

{

J
2(1+ DaJ

2)+
RnLeα2

J2ε

}

(

εpJ
2 + γpNHP

εpJ2 +
(

1+ γp
)

NHP

)

{(

J
2 + NHP + NHS

)

−
(

γpNHP

)2

εpJ2 +
(

1+ γp
)

NHP

− (γsNHS)
2

εsJ2 + (1+ γs)NHS

}

− RnNa,

They found that Taylor number, Chandrasekhar num-
ber, modified thermal diffusivity ratio and modified 
thermal capacity ratio enhance the stability of the sys-
tem while concentration Rayleigh number, Nield num-
ber, modified diffusivity ratio and Lewis number hasten 
the onset of thermal convection for top heavy distribu-
tion of nanoparticles in LTNE. Further, Yadav et al. [119] 
used zero nanoparticle flux boundary condition to study 
the effect of local thermal non-equilibrium on the onset 
of nanofluid convection in a porous layer subjected to 
rotation. For porous medium, Brinkman model was 
employed. The influence of double-diffusion and LTNE 
on the onset of convection in porous medium was con-
sidered by Nield and Kuznetsov [120]. They found that 
the system with LTNE exhibits lesser stability than LTE 
model as shown in Fig. 9.

It is worthwhile to mention that all the studies assume 
that the nanoparticles volume fractions are constant 
along the boundaries of the layer which is very difficult 
to achieve practically. As a result, this model is revised 
by considering zero nanoparticle volume fractions at the 
boundaries. Most of the problems were revisited by mak-
ing use of revised model. In both the models (Original 
and Revised), nanoparticle volume fractions are assumed 
to vary in horizontal direction only and the model is 
recently modified by taking constant value of nanoparti-
cles at the basic state which established more effectively 
the contribution of metallic and non-metallic nanoparti-
cles on the convection in the layer. By considering these 
facts, it is concluded that different alternations can be 

(45)

Ra =
(Qπ2 + J

2)

α2

{

(J + NH )(δJ + NHγ )− N
2
H
γ
}

(δJ + NHγ + NH )

+
Taπ2

J

α2

{

(J + NH )(δJ + NHγ )− N
2
H
γ
}

(Qπ2 + J2)(δJ + NHγ + NH )

− Rn

[

{

(J + NH )(εJ + NHγ )− N
2
H
γ
}

Le

(δJ + NHγ + NH )J
+ Na

]

.

Fig. 9  Comparison of LTNE and LTE model [120]
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made on the applied models to study convective motions 
which altogether could make a significant difference.

Concluding remarks and scope for future work
The paper presents an overview of various instability 
problems for nanofluids under the effects of different 
hydrodynamic and hydromagnetic parameters. The sig-
nificant heat transfer enhancement of convective fluids 
at very low nanoparticles concentration has been estab-
lished by many researchers and related literature has 
been reviewed in detail. As a consequence, mathematical 
investigations to explore the related mechanisms were 
initiated and the effects produced due to the presence of 
nanoparticles lead to new set of equations based on con-
servation laws which further encouraged theorists to for-
mulate the instability problems for nanofluids. The paper 
considers detailed review of work pertaining to analyti-
cal and numerical studies on nanofluid convection along 
with impact of various parameters like rotation, magnetic 
field, Hall effects and LTNE effects in porous and non-
porous medium. Presence of nanoparticles hastens the 
instability of nanofluids and porous medium add onto 
this characteristic of nanofluids. Rotation and magnetic 
field delays the convection while Hall currents and local 
thermal non-equilibrium effects are found to hasten 
the onset of convection in the fluid layer. Initially, it was 
assumed that nanoparticle flux can be controlled across 
the boundary as the temperature thereat. But in due 
course, original model was revised with the assumption 
of zero nanoparticle flux across the boundaries which 
are more realistic than top heavy/bottom heavy configu-
ration of nanoparticles. The revised model was further 
modified to study the instability problem which assumes 
the initial condition for nanoparticle volume fraction as 
constant and the expression for Rayleigh number is sig-
nificant to both the physical properties (density and con-
ductivity) which decide the stability of the system. It was 
found that oscillations are not possible and hence con-
ductive heat transfer is through non-oscillatory mode 
only. Further, surveyed literature is analyzed for possibil-
ity of future work and some observations are made like 
(i) the investigations need to be explored in more detail 
using advanced analytical methods and mathematical 
software for calculations to make the study more effi-
cient. (ii) The experiments must be performed in order 
to validate the results and hence the need for interdisci-
plinary research is found which would lead to motivation 
and practical significance of presented work.
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