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Abstract 

Aberrant expression of microRNA (miRNA) in biological cells is crucial evidence for early diagnosis of cancer. Improve-
ments in molecular detection techniques enabled miRNA to be detected in human blood obtained from liquid biop-
sies (e.g., Polymerase chain reaction, microcantilever sensor, and surface-enhanced Raman spectroscopy). Despite 
the advances in molecular detection technology, a simultaneous detection of single or multiple mutations of miRNAs 
is still a challenge. Here, we show electrostatic force microscopy (EFM) imaging of DNA-capped gold nanoparticles 
(DCNP) that enables discrimination between single and three-nucleotide polymorphism (SNP, TNP): 1 and 3-point 
mismatched nucleotides in miRNA-21 (M1_RNA, M3_RNA). Detection of the miRNA-21 and their mutant sequence is 
owing to sterically well-adjusted DNA–RNA interactions that take place within the confined spaces of DCNP. The aver-
age absolute EFM amplitudes of DCNP interacting with M1_RNA, and M3_RNA (− 81.0 ± 11.5, and − 65.7 ± 8.2 mV) 
were found to be lower than the DCNP reacting with normal (non-mutant) miRNA-21 (− 100.2 ± 13.6 mV).
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Introduction
The development of biomolecular detection in human 
blood, extracted with liquid biopsy technology for early 
and noninvasive cancer diagnosis, remains an important 
challenge in oncology [1–3]. Studies on the diagnosis of 
cancer through liquid biopsy have started from the detec-
tion of circulating tumor cells (CTC) [4, 5] in the blood 
and have recently led to the sequencing of circulating 
nucleic acids (CNA) [5–7]. Particularly, micro RNAs 
(miRNAs) can contribute to early development [8] and 
progression [9] of cancer, since they can play roles in vivo 
functions as oncogenes or tumor suppressor genes [10, 
11]. Aberrant expression of miRNA in biological cells is 
crucial evidence for early diagnosis of cancer [12, 13]. 

Therefore, miRNA analysis has been highlighted as a 
non-invasive cancer diagnosis method.

Moreover, precise identification of the number and 
position of nucleotide mismatches in miRNA is funda-
mental to determine the disease type of a patient and 
anticipate the time of onset. Specifically, mutations of 
two or more nucleotides in a miRNA are more aggres-
sive than mutations caused by a single nucleotide poly-
morphism [14]. This is because the risk of mutation 
of multiple amino acids increases as the successive 
positions of the codons change. However, in general 
method of miRNA assay (e.g., polymerase chain reac-
tion [15], next generation sequencing [16], and surface-
enhanced Raman spectroscopy [17]), a simultaneous 
detection of single or multiple mutations of miRNAs is 
still a challenge. Specifically, the detection of miRNAs 
at the single molecule level enables detection of even 
single nucleotide mutations, but it is difficult to iden-
tify the sequence of all RNAs in solution. Conversely, 
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fluorescence based optical sensors that detect all miR-
NAs in solution are difficult to have a single mutation 
resolution.

To overcome these hurdles, we have adopted DNA-
capped gold nanoparticles (DCNPs) as a sensing plat-
form. A probe DNA (pDNA) was immobilized onto 
uniformly-sized 50  nm gold nanoparticles to capture 
miRNA-21 which has early diagnostic and prognostic 
potential in a wide variety of cancers including lung and 
breast cancers. In addition, to measure the electrostatic 
potential of DCNP surface, electrostatic force micros-
copy (EFM) was used for high-resolution detection of 
individual DCNPs. EFM is one of standard application of 
AFM for profiling the electrostatic surface potential with 
nanoscale level [18]. EFM measures the contact poten-
tial difference (CPD) between the conductive cantilever 
tip and the sample surface. EFM utilizes the electrostatic 
force between the tip and the sample to get the CPD [18, 
19]. When the tip scans over the sample, the external bias 
is applied between the tip and the sample to nullify the 
CPD. EFM has the advantage that it is able to measure 
the surface potential of an individual oligomer [20] or 
nanoparticle [21], in contrast with conventional elec-
trophoresis and zeta-potential. Therefore, gene muta-
tion analysis of miRNA using a combination of EFM and 
DCNP has the following advantages: (i) dozens of DCNP 
(30–50 individual complexes) surface charge analyzes in 
one imaging (The surface charge of one DCNP repre-
sents the result of complementary binding reactions of 
more than 600 miRNAs and pDNAs [22], and dozens of 
these results are obtained in one imaging, which allows 
efficient statistical analysis of miRNA mutation assay [19, 
23]); (ii) accurate DNA–RNA response affinity analysis 
due to the binding of freely moving DCNP and miRNA 
in solution; (iii) label-free fashion; (iv) single or multiple 
nucleotide assay using nano-scale resolution of EFM.

As a result of gene mutation analysis using our method 
with these advantages, the average absolute EFM ampli-
tudes of DCNP interacting with M1_RNA, and M3_RNA 
were found to be lower than the DCNP reacting with 
normal (non-mutant) miRNA-21. This result implies that 
the amount of miRNA to be bound decreases as the num-
ber of nucleotides mismatches increases. We believe that 
our miRNA analysis system will be a brand-new method 
of cancer diagnosis via liquid biopsy.

Materials and methods
Preparation of gold nanoparticles
Gold nanoparticles (GNP) (Mean size = 50.0  nm; 
CV ≤ 8%) solution was purchased from BBI Solutions 
(Cardiff, UK). GNP were suspended in purified water at 
4.5 × 1010 particle per milliliter.

GNP functionalization with pDNA
To immobilize pDNA on the nanoparticles, we used a 
thiol-terminated DNA (sequence: 5′/5ThioMC6-D-TCA 
ACA TCA GTC TGA TAA GCT A-3′). The pDNA were 
reduced by 100  mM 1,4-dithiotheritol (DTT) (H7033, 
Sigma-Aldrich). The reduction of the pDNA by DTT 
is necessary to remove the protecting group from the 
DNA [24, 25]. To purify the pDNA from excess DTT, 
the pDNA solution was applied to GE Healthcare illus-
tra™ NAP™ Columns, NAP-5 (GE17-0853-01, Sigma-
Aldrich, St. Louis, Missouri, USA), after 1  h incubation 
at room temperature. Purified pDNA solution was mixed 
with colloidal GNP at room temperature for 1  h. Phos-
phate buffer with pH 7 and 10% sodium dodecylsulfate 
solution (V6551, Promega, Fitchburg, Wis-consin, USA) 
was added for pH adjustment, followed by the addition 
of six aliquots of 2  M sodium chloride solution (S7653, 
Sigma-Aldrich, St. Louis, Missouri, USA) to a final con-
centration of 0.3  M. After chemical functionalization, 
the mixture was centrifuged for 25 min at 14,000 rpm at 
room temperature to remove excess reagents. The super-
natant was removed, and 0.1 mM phosphate buffer was 
added to the tube containing the pDCNPs.

Hybridization of pDNA and miRNA
A mixture of 1  nM miRNA solution (c, M1, M3, and 
NC) and pDCNP solution was vortexed for 10  min at 
room temperature. After vortexing of the mixture, the 
temperature of the mixture is raised to 60 °C and then 
slowly lowered and mixed for 3 h in a roll mixer.

Preparation of EFM samples
For EFM imaging, 50  μl of the DCNPs were dropped 
onto each gold substrate, and the DCNPs were adsorbed 
on the gold substrate for 1 h. The gold substrate was then 
rinsed with deionized water and gently blow-dried with 
nitrogen to avoid aggregation of the DCNPs before AFM 
imaging or electrostatic force measurements.

Electrostatic force measurements of DCNPs
The topography and the electrostatic force measure-
ments of all DCNP specimens were performed using 
a commercial AFM (XE-100, Park Systems, Suwon, 
Korea) at room temperature. All of the topography 
and the electrostatic force mapping images (scan size: 
10 μm × μm) by non-contact mode were obtained at the 
scan speeds of 5 μm/s.

Results and discussion
Our miRNA assay system was pursued efficiently 
detecting point mutations by measuring the electro-
static force of DCNPs composed of a nanoparticle and 



Page 3 of 6Lee and Lee ﻿Micro and Nano Syst Lett            (2019) 7:21 

a hybridized form of DNA–miRNA (Fig.  1). The DNA 
and RNA sequences (22 mer; Table  1) were used in 
our assay system, and among them, RNA that binds to 
pDNA complementarily is miRNA-21. It is important 
that the assay system can accurately identify the num-
ber and position of nucleotide mismatches in miRNA. 
To test how many nucleotide mutations our system 
can identify, we artificially made oligonucleotides with 
complimentary, 1, 3-point mismatched, and non-com-
plimentary nucleotides in miRNA-21 (c_RNA, M1_
RNA, M3_RNA, and, NC_RNA). Our system performs 
a complementary binding reaction between the GNPs 
to which pDNA is immobilized and the miRNA to be 
measured (Fig.  1). When pDNA and miRNA react, 
there is a difference in binding affinity according to the 
difference of the sequence of miRNA, and the differ-
ence in binding affinity is represented by the number 

of miRNAs capturing to GNPs. Since all oligonucleo-
tides bound to the GNP surface have a strong negative 
charged phosphate backbone, the electrostatic surface 
potential of DCNP after DNA–RNA reaction indicates 
the amount of bound miRNA. Furthermore, as shown 
in Fig.  2, the electrostatic surface potential of DCNP, 
which represents the number of miRNAs capturing to 
GNPs is expected to decrease as the number of miRNA 
mutations increases. Because, the equilibrium con-
stant for two different oligonucleotides hybridization 
exponentially diminished asymptotically as number of 
nucleotide mismatches increased [23].

Before the measurements of the DCNPs electri-
cal surface potential, the size and morphology of the 
DCNPs were confirmed by AFM topographic imag-
ing. Figure  3 represents the topographic images and 
the histograms of the height distributions of all the 
types of DCNPs. Each histogram graph was obtained 
from 30 to 50 individual complexes captured as a sin-
gle image under each condition. Both the mean value 
and standard deviation for each case were extracted by 
the Gaussian fits: c_RNA (49.32 ± 1.97  nm), M1_RNA 
(49.16 ± 1.23  nm), M3_RNA (49.32 ± 1.97  nm), and 
NC_RNA (49.70 ± 1.78 nm). As a result of the height of 
DCNP, it is possible to prove that the diameter of GNP 
used in this paper is identical. In addition, since the 
diameter of GNP is much larger than oligonucleotides, 
it is confirmed that the number of oligonucleotides 

Fig. 1  Schematic representation of the assembly of DCNPs and their electrostatic force detection by EFM for liquid biopsy-based bioassay of 
circulating miRNA-21 (with c_RNA, M1_RNA, M3_RNA)

Table 1  DNA and RNA sequences used in the experiment

Name Sequence

Probe DNA 5′-SH-(CH2)3-TCA ACA TCA TC TGA TAA GCT A-3′

c_RNA 5′-UAG CUU AUC AGA CUG AUG UUG A-3′

M1_RNA 5′-UAG CUU AUC AAA CUG AUG UUG A-3′

M3_RNA 5′-UCG CUU AUC GGA CUG AUC UUG A-3′

NC_RNA 5′-TCU​ UCU TCU​ GTC​ TGU​ TUU GCT​ U-3′
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Fig. 2  Diagnosis mechanism of DCNP/EFM system for liquid biopsy-based bioassay

Fig. 3  a–d Topography images and Gaussian distribution of the DCNPs: a pDNA + c_RNA, b pDNA + M1_RNA, c pDNA + M3_RNA, and d 
pDNA + NC_RNA
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attached to the surface of GNP does not affect the 
height of DCNP.

For mutation analysis of miRNA, the electrostatic sur-
face potential of DCNP was measured by EFM. Figure 4 
represents the EFM mapping images and the histograms 
of the EFM amplitude distributions of all the types of 
DCNPs. Both the mean value and standard deviation for 
each case were extracted by the Gaussian fits: c_RNA 
(− 100.21 ± 13.61  mV), M1_RNA (− 80.99 ± 11.49  mV), 
M3_RNA (− 65.69 ± 8.17  mV), and NC_RNA 
(− 53.55 ± 6.92 mV). As a result of the EFM mapping of 
DCNP, it was evident that the absolute value of the EFM 
amplitude decreased as the number of mutations of the 
miRNA increased. The decrease in the absolute value of 
the EFM amplitude implies that a relatively small amount 
of miRNA binds to DCNP. This result depicts that the 
presence of the mutant of the miRNA to be measured 
weakens the binding affinity of the miRNA to pDNA, 
which can be used to detect the mutation of miRNA.

Furthermore, to evaluate the detection resolution 
of our system, we performed t-tests using the EFM 
amplitude data of both neighboring conditions (i.e., 

pDNA + c_RNA/pDNA + M1_RNA, pDNA + M1_
RNA/pDNA + M3_RNA, and pDNA + M3_RNA/
pDNA + NC_RNA). In the t-tests, all P-values were 
much less than 0.05. As a result, we believe that the EFM 
amplitudes of DCNPs enabled reliable discrimination of 
mutant miRNA.

Conclusion
This study confirmed that the miRNA detection system 
(a combination of DCNP and EFM) is a promising system 
that could clearly distinguish miRNAs with mutations of 
1 or 3 compared to wild type of miRNA-21. Moreover, 
statistical analysis from the electrostatic surface poten-
tial of dozens of DCNPs could be performed through 
just one round of EFM imaging. These results suggest 
that our miRNA analysis system allows for efficient 
sequence-specific detection of miRNAs. We believe that 
the application of our system to the detection of miRNAs 
in the blood or miRNAs in the exosomes could lead to a 
remarkable liquid biopsy-based cancer diagnostic system.

Fig. 4  a–d Electrostatic force measurements and Gaussian distribution of the DCNPs: a pDNA + c_RNA, b pDNA + M1_RNA, c pDNA + M3_RNA, 
and d pDNA + NC_RNA. To confirm whether our approach can discriminate between two neighboring conditions (i.e., pDNA + c_RNA/
pDNA + M1_RNA, pDNA + M1_RNA/pDNA + M3_RNA, and pDNA + M3_RNA/pDNA + NC_RNA), t-tests were performed to compare the results 
between each group. P-values were calculated using a t-test (P < 0.05)
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Abbreviations
miRNA: micro RNA; AFM: atomic force microscopy; EFM: electrostatic force 
microscopy; DCNP: DNA-capped gold nanoparticle; SNP and TNP: single 
and three-nucleotide polymorphism; M1_RNA and M3_RNA: 1 and 3-point 
mismatched nucleotides in miRNA; pDNA: probe DNA; CPD: contact potential 
difference.
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