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Abstract 

We propose a novel localized surface plasmon resonance (LSPR) sensor system based on polymer material. The pro‑
posed LSPR system consists of the incident medium with low-loss polymer waveguide and the chemically immobi‑
lized plasmonic nanoparticles for on-chip LSPR sensing. Because of low coupling efficiency of conventional methods, 
usually intricate test equipment such as dark field microscopes equipped with cooled charge-coupled device detec‑
tors is required to perform nanoparticles LSPR sensing. Using a polymer optical waveguide instead of conventional 
free-space excitation techniques (e.g., using an objective lens) in the LSPR sensing system offers miniaturization, low 
cost, and potable sensing capability. The integration of this hybrid plasmonic-photonic sensor with optical system 
based on fiber optic is measured to refractive index with a sensitivity of 3.10/RIU.
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Introduction
The oscillations of free electrons in noble metal nanopar-
ticles when the light is incident is called localized surface 
plasmon (LSP), and the phenomenon that the scattered 
signals in incident lights by nanoparticles are ampli-
fied with LSP is referred to localized surface plasmon 
resonance (LSPR) [1, 2]. One of the most remarkable 
effects of LSPR is that the intensity of LSPR is sensitive 
to changes of the refractive indices around noble metal 
nanoparticles [3, 4]. The advantages of LSPR sensors hav-
ing this characteristic are real-time analysis, label-free 
detection, and high sensitivities [5–7]. However, the most 
of LSPR sensors have been developed to method that the 
incident lights are focused to nanoparticles in free-space 
by the objective lens, which limits the coupling efficiency, 
miniaturization, cost-effectiveness, and accessibility 
[8–12].

In this study, we propose a novel LSPR based optical 
waveguide (OWG) sensor which is fabricated by SU-8 
photoresist (PR) through relatively simple process that 

can efficiently combine the light with nanoparticles. A 
simple optical measurement set-up is also constructed 
by applying the optical fiber, and the proposed sensor 
is used to LSPR signal measurement according to the 
refractive index changes of the surrounding medium. 
The LSPR based OWG sensor is expected to the applica-
tion as biosensor with advantages in miniaturization, low 
cost, and portability in the future.

Materials and methods
Design and fabrication of OWG
The OWG of stair-shape is designed as shown in Fig. 1a 
because the situation that the lights directly enter the 
detector from the light source without the pass of OWG 
can cause the noise in the observation of LSPR signal. 
Considering the fact that light transmission loss of 0.1 dB 
per 1 mm occurs in the OWG using SU-8 (2075, Micro-
chem, Newton, MA, USA), the distance between both 
optical fiber holders is fabricated as short as possible 
2 mm [13]. If the stair angle (θ) of OWG becomes large, 
the light transmission efficiency is decreased due to the 
increases of the bending angle and the effective length 
of OWG [14, 15]. On the other hand, when θ becomes 
smaller, the light from optical fiber connected to the 
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source can be directly incident on the opposite optical 
fiber, which makes it difficult to observe the LSPR signal. 
In order to improve the light transmission efficiency of 
OWG, the θ is selected to 30° within a range in which the 
effective length of OWG is shortened and the light is not 
directly transmitted between the optical fibers. The width 
of OWG is planned to be 160  µm, considering that the 
coupled optical fiber diameter which includes core and 
cladding is 125 µm and the spread of light emitted from 
the optical fiber. Finally, the width of optical fiber holder 
is decided to be 145 µm to allow enough area for the opti-
cal fiber. A gap of about 10 µm is set on both sides of the 
optical fiber.

The OWG was simply fabricated through a single 
lithography process (MDA-400M, Midas system, Dae-
jeon, Republic of Korea) of SU-8. The excellent optical 
transparency beyond 400  nm and the low transmission 
loss of SU-8 make it a preferred material for the fabri-
cation of various optical components and systems such 
as OWGs, splitters, directional couplers, and gratings 
[16–18]. SU-8 has a high refractive index of 1.59 at the 
wavelength of 640  nm used in the measurement, which 
can increase the light guiding efficiency due to the large 
contrast of the refractive indices between SU-8 and 
organic-based tetraethyl orthosilicate (TEOS) used as 
the cladding [19]. The refractive index of TEOS is 1.38. 

SU-8 also has good mechanical and thermal stabil-
ity, and is suitable for biosensing applications due to its 
biocompatibility and chemically stable characteristic 
[20, 21]. The SU-8 was spin-coated (ACE-200, Dong ah, 
Seoul, Republic of Korea) on 4  in. glass wafer (Boro33, 
DS semicon, Anyang-si, Republic of Korea) at 1700 rpm 
for 40  s. At this time, the soft bake was sequentially 
performed at 65  °C for 20 min and at 95  °C for 55 min, 
and the exposure was continued for 60  s at intensity of 
25  mW/cm2. The post exposure bake was carried out 
at 65  °C and 95  °C for 10 min and 30 min, respectively. 
Finally, the sample was developed in AZ 1500 thinner 
(AZ electronic materials, Seoul, Republic of Korea) dur-
ing 90 min to complete the OWG fabrication. Figure 1b 
is micrograph when the optical fibers (FG105LCA, Thor-
labs, Newton, NJ, USA) are fixed to the fabricated fiber 
holder. The optical fiber was immobilized to the fiber 
holder using ultraviolet curable resin (NOA61, Norland, 
Cranbury, NJ, USA). Figure  2 shows the field emission 
scanning electron microscopy (FE-SEM, S-4800, Hitachi, 
Ibaraki, Japan) images of OWG and optical fiber holder. 
The width and height of fabricated OWG were measured 
to be 162.4 µm and 126.3 µm, respectively. The width of 
the fiber holder was also 144.5 µm.

Fabrication of OWG sensor based on LSPR
The method to immobilize the Au nanoparticles on 
OWG using SU-8 consists of four steps. In the first step, 
the oxygen plasma (CUTE, Femto science, Yongin-si, 
Republic of Korea) was treated on OWG with 60  W 
power and 0.8  m Torr during 50  s. The oxygen plasma 
treatment removes the organic compound and func-
tionalizes the surface of OWG with hydroxyl group [22, 
23]. Next, the sample was reacted with 1% TEOS (98%, 
Sigma aldrich, St. Louis, MO, USA) solution in isopro-
panol (99.5%, Daejung, Siheung-si, Republic of Korea) 
for 3 h, which acts as the cladding in OWG and controls 
the Au nanoparticles density on the surface [24]. In the 
third step, 1% 3-(ethoxydimethylsilyl)-propylamine (97%, 
Sigma aldrich) solution based on isopropanol was coated 
on the OWG for 2 h to form the self-assembled monolay-
ers which have the amine groups with positive charges to 
immobilize the Au nanoparticles on the OWG surface. 
Finally, the Au nanoparticles which are prepared at about 
47.8 nm diameter were attached on OWG during 6 h. The 
Au nanoparticles were synthesized through the Turk-
evich method by reducing the Au(III) chloride trihydrate 
(99.9%, Sigma aldrich) using sodium citrate dehydrate 
(99%, Daejung) [25, 26]. Since the Au ions are reduced 
by citrate, the negative charges are present on the surface 
of the Au nanoparticles, which enables the electrostatic 
bonding with the positive charges of amine groups on the 
OWG [27, 28]. The Au nanoparticles are immobilized on 
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Fig. 1  Schematic diagram of the OWG and the microscope image. a 
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the side surface as well as the top surface of OWG. How-
ever, the nanoparticles are not attached between OWG 
and optical fiber in order to prevent the decrease of cou-
pling efficiency. When Au nanoparticles are immobilized 
on the gap between OWG and fiber, the incident light 
from optical fiber will be reflected back to the fiber by the 
Au nanoparticles. The fabrication process of OWG sen-
sor based on LSPR and the FE-SEM photography at the 
surface of proposed sensor were displayed in Fig. 3. On 
the OWG surface, the Au nanoparticles were mostly pre-
sent as monomer without excessive aggregation.

Results and discussion
Optical measurement set‑up
The optical measurement set-up for the record of LSPR 
signal is simply composed as shown in Fig.  4. The light 
from the laser (Iflex-2000, Qioptiq, Hamble-le-rice, UK) 
is transmitted to the OWG sensor through the optical 
fiber, which reacts with the Au nanoparticles on the sen-
sor surface. Then, the reacted lights are again collected 
through the optical fiber to the photodetector (PDA36A, 
Thorlabs). The collected signals by the photodetector are 
sent to a computer by the data acquisition (USB-6210, 
National instruments, Austin, TX, USA) and observed in 
real-time. In this set-up, the optical fibers are positioned 
as close to OWG as possible [29].

Refractive index measurement using the OWG sensor 
based on LSPR
It is evaluated that the OWG sensor generates the 
changed LSPR intensities according to the increase of 
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refractive index around Au nanoparticles. When six 
refractive index solutions with a spacing of 0.01 from 
1.33 to 1.38 were sequentially supplied to the sensor, 
the LSPR intensities were gradually increased in Fig. 5a. 
The refractive index sensitivity which is defined by the 
normalized intensity change per refractive index unit 
(RIU) and the coefficient of determination (R2) indicat-
ing the degree of correlation between the two variables 
are shown in Fig. 5b [30, 31]. The sensitivity of proposed 
sensor was 3.10/RIU and the R2 was 0.99, which mean 
the high linearity between the refractive index and the 
output of OWG sensor. The normalized intensity is used 
to calculate the sensitivity because the LSPR intensity 
depends on external factors such as the laser power, the 
gain of photodetector, and the alignment between light 
source and fiber [32]. The normalized intensity is defined 
as the relative signal based on the measured intensity at 
1.33 [33].

Conclusion
The conventional methods that the light exposes into a 
free space during LSPR measurement have been prob-
lematic such as the insufficient optical coupling efficiency 
and the requirement of expert skill for the alignment of 
light. To solve these problems, we applied the OWG that 
do not expose the light to the air and suggested using it 
as an LSPR sensor. The low-loss OWG was fabricated on 
glass wafer by SU-8 using a single lithography process 
and the OWG sensor based on LSPR is completed by 
immobilizing the Au nanoparticles on OWG. In addition, 
it was possible to construct the compact optical system 
by using optical fiber, which enables the simple trans-
mission and collection of light. The proposed sensor was 
applied as a refractive index sensor and it was confirmed 
that the OWG sensor based on LSPR exhibits a very lin-
ear response with the change of refractive index. Based 
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on these results, if a number of OWGs are integrated into 
a single chip, it is expected that the various target mol-
ecules can be multi measured in real-time as the biosen-
sor application.
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