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Folding‑paper‑based preconcentrator 
for low dispersion of preconcentration plug
Kyungjae Lee, Yong Kyoung Yoo, Sung Il Han, Junwoo Lee, Dohwan Lee, Cheonjung Kim and Jeong Hoon Lee*

Abstract 

Ion concentration polarization (ICP) has been widely studied for collecting target analytes as it is a powerful precon-
centrator method employed for charged molecules. Although the method is quite robust, simple, cheap, and yields 
a high preconcentration factor, a major hurdle to be addressed is extracting the preconcentrated samples without 
dispersing the plug. This study investigates a 3D folding-paper-based ICP preconcentrator for preconcentrated plug 
extraction without the dispersion effect. The ICP preconcentrator is printed on a cellulose paper with pre-patterned 
hydrophobic wax. To extract and isolate the preconcentration plug with minimal dispersion, a 3D pop-up structure is 
fabricated via water drain, and a preconcentration factor of 300-fold for 10 min is achieved. By optimizing factors such 
as the electric field, water drain, and sample volume, the technique was enhanced by facilitating sample preconcen-
tration and isolation, thereby providing the possibility for extensive applications in analytical devices such as lateral 
flow assays and FTAR cards.
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Background
Ion concentration polarization (ICP) phenomena, 
wherein ion concentrations are distributed at the inter-
face between an ion exchange membrane (IEM) and an 
electrolyte having an electric potential [1], are intensively 
studied in the field of micro/nanofluidics [2–6]. In gen-
eral, ICP occurs near an IEM via the permeation of spe-
cific charged ions (cation or anion). The ion enrichment 
and depletion zones are generated in the fluidic channel 
[1]. Employing micro/nanofluidic networks, the ICP phe-
nomena are frequently utilized to preconcentrate charged 
sample analytes [3, 7, 8]. Han et al. have investigated ICP 
preconcentration of various biomolecules in fluidic sys-
tems [9–11]. Moreover, desalination of seawater using 
ICP phenomena has been reported [12, 13].

Although many studies investigated analytical systems 
for both analytical and point-of-care (POC) applications 
[14–16], detecting biomolecules at concentrations below 
the limit of detection (LOD) is still a critical issue for ana-
lytical devices. To address this problem, an ICP-based 

preconcentrator has been developed [17, 18] for enhanc-
ing the LOD. In many cases, the preconcentration plug, 
particularly used for the delivery of preconcentrated sam-
ples to external equipment and devices, needs to deliver 
the samples with minimal dispersion; however, the dis-
persion of the sample plug is a critical issue [19]. When 
the electric field is removed, the force balance between 
external hydraulic force/electric field and depletion force 
cannot be maintained. Hence, the ICP preconcentration 
plug is drastically dispersed in the fluidic channel, which 
severely hampers the use of preconcentration devices 
with external analytical devices (i.e., mass spectrometry 
and sensors).

To extract and separate the preconcentration plug, 
Chen et  al. [7] made use of the difference in electro-
phoretic mobility and a magnetic valve, however, one 
still needs simple methods without complex additional 
components. Recently, Kwak and Hong et al. proposed a 
paper-based ICP preconcentrator to facilitate extraction. 
Hong et  al. developed a continuous-flow preconcentra-
tor with a bifurcation system to collect and separate the 
samples [19, 20] Recently, we proposed a paper-based 
preconcentrator, which preconcentrates FITC—albumin 
with a high preconcentration factor of up to 310-fold 
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for 400  s [3], however, there are limitations in applying 
the preconcentrator for using external analytical devices 
because of dispersion of preconcentrated sample plug. In 
this study, a 3D foldable-paper-based ICP preconcentra-
tion system is proposed for obtaining a preconcentration 
plug with minimal dispersion. By employing the 3D pop-
up structure, the preconcentration plug was concentrated 
and isolated up to 300-fold, which is directly applicable 
for POC test kits and FTAR cards.

Methods
Device fabrication
As shown in Fig. 1a, b, the 3D folding-paper-based ICP 
preconcentrator comprises sample and buffer reservoirs, 
a folding-type outlet reservoir, channels, and Nafion 
patterns (known as cation exchange membrane). The 
sample and buffer reservoirs have a diameter of 3  mm, 
and the outlet reservoirs have diameters of 3, 6 and 
9  mm. Each reservoir is connected with a fluidic chan-
nel of dimensions 1 ×  1.5  mm. The Nafion membranes 
(1 ×  7 and 1 ×  14  mm, Sigma-Aldrich, St. Louis, MO) 
comprising two patterns are immobilized between each 

reservoir using one-sided adhesive tape (3  M Scotch™ 
tape with a width of 18 mm). To apply electric potential, 
Ag/AgCl electrodes are located on the buffer reservoirs, 
as shown in Fig.  2a. The preconcentrator was designed 
using CorelDraw software (Coral Co., Canada), and the 
patterned hydrophobic wax was printed on a cellulose 
paper (Whatman chromatography cellulose paper, Grade 
1). A commercial wax printer (ColorQube 8870, Xerox) 
was used for the hydrophobic barrier [21, 22]. To pen-
etrate the wax inside the paper, the wax-printed paper 
was heated using convection oven at 120 °C for 80 s. To 
prevent leakage of the samples, the opposite side of the 
paper is printed and sealed with highly transparent one-
sided adhesive tape.

Device operation and preconcentration monitoring
Figure  2b shows the sequential process of the opera-
tion principle of the 3D folding-paper-based ICP pre-
concentrator. First, a sample of 10 μL (NaCl buffer of 
1  mM) is loaded onto the buffer reservoirs. An elec-
tric potential of 100  V/cm using Ag/AgCl electrodes is 
applied between the buffer reservoirs via a benchtop 

Fig. 1  Device schematic and optical images. a Scheme of 3D paper-based ICP preconcentrator. The top layer is a double-sided adhesive tape for 
paper folding, and the middle layer comprises the hydrophobic wax (black area) and cellulose paper (white area). The bottom layer is Nafion pat-
terned on the adhesive tape for ICP phenomena. b The optical images. The top and middle images are placed on the upper and lower sides of the 
folding device, respectively. The bottom image is placed on the unfolding device
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sourcemeter (Keithley 2410 current–voltage source 
measurement unit, Keithley Instruments, Inc.). When 
the electric potential is applied, the sample analytes of 
volume 10 μL are loaded onto the sample reservoir. They 
are monitored using an inverted epifluorescence micro-
scope (Olympus, IX-71) and a thermoelectrically cooled 
charge-coupled device camera (Hamamatsu Co., Japan). 
After the preconcentration, the outlet reservoir is folded 
up, and the separated preconcentration plug of the sam-
ple reservoir is detached. To monitor the ICP phenom-
ena, fluorescence dyes (Alexa fluor 488, Invitrogen, 
Carlsbad, CA, USA) and an orange G dye (Sigma-Aldrich, 
St. Louis, MO) with a buffer solution are utilized. The flu-
orescence and optical images are analyzed using ImageJ 
(Wayne Rasband, National Institutes of Health, Bethesda, 
MD, USA). We carried out all experiments at controlled 
R.T. and humidity (R.H. = 55 ± 5%) to avoid run-to-run 
experimental errors.

Results and discussion
ICP phenomena and preconcentration
Figure  2a shows the working principle of the 3D fold-
ing-paper-based ICP preconcentrator. The ICP-based 

preconcentrator was operated with a DC voltage of 100 V, 
and the preconcentrated plug with force balance between 
the driving force of the depletion zone and the capillary 
force was obtained. Only the buffer solution was freely 
drained from the sample reservoir by the capillary action, 
while the charged molecules remained in the sample res-
ervoir because the depletion zone formed in front of the 
Nafion pattern was blocked. As shown in Fig. 3a, b, the 
depletion zone is observed near the anodic Nafion side 
in the sample reservoir, and the preconcentration plug 
was successfully generated. Figure 3a shows an increase 
in the fluorescence intensity with preconcentration time. 
The preconcentration factor at 600 s increased with elec-
tric potential as 1-, 2-, 5-, 30-, 100- and 300-fold for 5, 
10, 20, 50, 75 and 100 V, respectively. A high preconcen-
trator factor (300-fold) was achieved with a sample vol-
ume of 10 μL. The I–V curve was measured to check ICP 
phenomenon. Figure 3c and d show the current–voltage 
response and corresponding fluorescence intensity of the 
sample reservoir. Previous studies analyzed the current–
voltage response with vortices of electroconvection [19, 
23]. In the current–voltage response, the following three 
regions were observed: ohmic, limiting, and overlimiting. 

Fig. 2  Schematics of ICP preconcentration and procedure. a Illustration showing fluidic motion within sample reservoir under electric potential. 
Target samples (red circle) are preconcentrated in the sample reservoir. b Schematics showing four steps of preconcentration and extraction of 
target samples
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We observed 100 V, the optimal electric potential that we 
operated for ICP, are in the overlimiting region that gen-
erates vortices of electroconvection.

Device optimization
To optimize the preconcentrator, the preconcentrat-
ing factor was measured considering both the outlet 
reservoir diameter and total preconcentration volume. 
The diameter affects the capillary force, which aids in 
water draining, thereby maintaining the force balance 
for stable preconcentration. For optimizing the device, 
outlet reservoirs with diameters of 1, 3 and 9 mm were 
employed. Figure 4a shows the preconcentration factors 
with respect to varying diameters for 100 V. The fluores-
cence intensity drastically increased for the outlet reser-
voir (red line) with a diameter of 9 mm. Preconcentration 
factors of 40-, 80-, and 300-fold were obtained for diam-
eters of 3 mm (green line), 6 mm (blue line), and 9 mm, 

respectively. The results show that a diameter of 9  mm 
is the optimal size for the outlet reservoir. From Darcy’s 
law, the flow rate can be expressed as follows [20, 24, 25]:

where Q is the volumetric flow rate, к is the permeabil-
ity of the paper with respect to the fluid, μ is the viscos-
ity of the fluid, A is the cross-sectional area of the flow, 
and Δp is the pressure difference along the direction of 
flow over length L. The volumetric flow rate of the drain 
water depends on the cross section of the outlet reservoir 
(diameter).

The total preconcentration volume is one of the essen-
tial criteria for the ICP preconcentration. As shown in 
Fig. 4b, the preconcentration factor was monitored based 
on the total preconcentration volume. The preconcentra-
tion factors of 50-, 90-, and 300-fold are measured for 

(1)Q = −

κA

µL
�p,

Fig. 3  ICP preconcentration utilizing 3D folding-paper-based ICP preconcentrator. a The fluorescence intensities of the preconcentration plug for 
operation voltages of 5 V to 200 V (n = 3). b The fluorescence images with respect to time at 100 V. The depletion zone is indicated with red arrows. 
c Current–voltage response of the ICP phenomena showing the following three distinct regions: ohmic, limiting, and overlimiting. d The fluores-
cence images of the preconcentration at 120 s. The vortices that are generated at a depletion zone are indicated with red arrows (50, 100 V)
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volumes of 10 μL (red line), 15 μL (blue line), and 20 μL 
(black line), respectively. In general, the preconcentrating 
volume and factor have been considered as a trade-off. 
If the preconcentrating volume is increased, the precon-
centrating factor generally decreases. In Fig. 4b, a higher 
preconcentrating factor is observed for a total precon-
centration volume of 10 μL.

Isolation and extraction of preconcentration plug 
with folding structure
The ability of the preconcentrator to maintain the pre-
concentrating factor with minimal dispersion effect was 
investigated. The following two types of preconcentra-
tors were prepared: with and without folding pop-up 
structure (Fig.  5a). To check the ability of sustaining 
the preconcentration plug, the preconcentration was 

performed by draining the buffer solution for 120 s, and 
subsequently, the electric field was turned off. In turns, 
we monitored the preconcentration factor with time up 
to following 8  min. A preconcentration factor of  >sev-
enfolds was observed for the folding pop-up structure, 
whereas it was  ~threefolds (Fig.  5a) for the no-folding 
pop-up structure. The enhanced fluorescence images 
were clearly observed with the folding pop-up structure. 
Figure 5b shows the fluorescence images that are sequen-
tially captured at 0, 120, and 600 s for both with/without 
folding pop-up structures. The preconcentration was 
performed for 120  s, and the dispersion of the precon-
centration plug was then monitored. Without the folding 
pop-up structure, the preconcentration plug dispersed 
toward the outlet reservoir. However, with the folding 
pop-up structure, the preconcentration plug showed 

Fig. 4  ICP preconcentrator with respect to a outlet reservoir diameter (n = 3). b Sample volume of the sample reservoir (n = 3)
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small dispersion, as the capillary forces were eliminated 
by disconnecting the fluidic channel.

To demonstrate realistic applications, ICP preconcen-
tration of Orange G dye was performed, which facilitated 

manual inspection (Fig.  6). After the ICP preconcentra-
tion for 10 min, with folding pop-up structure, the pre-
concentration plug with small dispersion was obtained. 
The preconcentrated sample could be used into two 

Fig. 5  Ability of the 3D folding-paper-based ICP preconcentrator for maintaining preconcentrating factor with minimal dispersion

Fig. 6  FTAR card applicable ICP preconcentrator. After ICP preconcentration, the sample reservoir could be cut and directly used for FTAR card
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analysis methods. First, following standard FTA extrac-
tion protocol, we plan to apply preconcentrated samples 
for FTAR cards. Second, we could analyze the precon-
centrated sample reservoir using paper-based mass spec-
trometry [26, 27].

Conclusion
In this study, a 3D folding-paper-based ICP preconcen-
trator was developed for preconcentrating charged bio-
molecules with a small dispersion. A preconcentration of 
300-fold for a sample volume of 10 μL was obtained. By 
optimizing the electric field, sample volume, and outlet 
reservoir size, the 3D folding pop-up paper-based pre-
concentrator was successfully implemented for extract-
ing the ICP preconcentration plug with low dispersion 
effects. This technique can be used in applications involv-
ing bioassay and environment monitoring (i.e., lateral 
flow assay, FTAR card and mass spectrometry).
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