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Abstract 

This investigation aimed to evaluate the thermal conductivity ratio (TCR) of SWCNT-CuO/Water nanofluid (NF) using 
experimental data in the T range of 28–50 ℃ and solid volume fraction range of SVF = 0.03 to 1.15% by an artificial 
neural network (ANN). MLP network with Lundberg-Marquardt algorithm (LMA) was utilized to predict data (TCR) 
by ANN. In the best case, from the set of various structures of ANN for this nanofluid, the optimal structure was cho-
sen, which consists of 2 hidden layers, the first layer with the optimal structure consisting of 5 neurons and the sec-
ond layer containing 7 neurons. Eventually, for the optimal structure, the  R2 coefficient and MSE are 0.9999029 
and 6.33377E-06, respectively. Based on all ANN information, MOD is in a limited area of − 3% < MOD <  + 3%. Compari-
son of test, correlation yield, and ANN yield display that ANN evaluates laboratory information more exactly.

Keywords SWCNT-CuO nanoparticles, Thermal conductivity ratio

Introduction
Nowadays, polymer nanofibers and metal oxides are 
prepared with the help of electrospinning (E-spin) tech-
niques. Nanoparticles (NPs) produced by the E-spin 
technique are used in fields such as sensor development, 
decontamination, energy storage, biomedicine, nano-
fluids and catalysts, etc. [1–3]. The suspension liquid, in 

which the constituent solid particle is less than 100  nm 
is nanofluid (NF) [4]. Due to the improved properties of 
the dispersion of nanoparticles in liquids, the published 
papers in the past two decades in the field of NFs are 
increasing sharply. The thermal conductivity (TC) that 
is acquired using adding nanoparticles to the base fluid 
[5–10], the basis for many innovations is in heat trans-
fer intensification [11–13]. This is used in various parts of 
the industry such as cooling and heating, electricity gen-
eration, and transportation [14–19]. The impact of NF 
on heat inverters can be reducing the size of the heating 
system and reducing the amount of fluid in circulation 
[20]. The thermal attributes and efficiency of NFs HT 
with different combinations were studied by many scien-
tists. Table 1 lists some of the research on NF heat trans-
fer. Esfe et al. [12] researched properties of TC, dynamic 
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viscosity and Nusselt number of MgO/water NF. TC is 
increased up to 23%.

To model attributes like viscosity and TC of NFs, 
mathematical correlations can be presented based on 
the obtained experimental data. But recently, software 
and coding techniques such as ANNs were used for this 
purpose [27–34]. ANN has different applications in 
different industries and different scientific disciplines. 
Some applications of ANNs are shown in Fig. 1.

Today, researchers are looking for a way to achieve 
the best results in the shortest time and at the lowest 
cost. Many studies in various scientific and engineering 
fields were carried out by ANN [35–37]. Malika et  al. 
[38] investigated the efficiency of a sonophotocatalytic 
reactor and the removal of toxic particles from indus-
trial wastewater with Al(OH)3-MWCNT HNF suspen-
sion with Ti + 4 coating using RSM and ANN methods. 
The ANN with multi-layer perceptron method and  R2 
value = 0.999 confirmed the success of the experimental 

findings. Due to the significant differences related to 
the properties of different nanofluids and time-con-
suming experimental experiments, the need for meth-
ods such as ANN became more apparent. Table 2 shows 
some modeling of ANNs for TC of nanofluids.

Today, the need to use the ANN to estimate and fore-
cast the relatively complex attributes of nanofluids is not 
hidden from anyone. Efforts to optimize the ANN or other 
post-processing methods could be the basis for the next 
generation of research by researchers to address the wide-
spread use of nanofluids. Different types of ANNs have 
targeted and imitated only a part of the learning and adap-
tation capabilities of the human brain, including multilayer 
perceptron model (MLP), radial neural network (RBF), 
support vector machines (SVM) and Hopfield ANN. How-
ever, one of the most basic models used for data estimation 
is the multi-layer perceptron network, which simulates the 
transfer function of the human brain. In this study, experi-
mental data were extracted from reference [44]. Therefore, 

Table 1 Summary of research that investigated the NFs heat transfer properties

NPs Base fluid SVF (%) Conditions Max. heat transfer 
enhancement (%)

Ref.

Al2O3 Water 0.2–2.5 Re = 700–2050 41 [21]

MWCNT 0.5–1.5 Re = 150–15000 2 [22]

CuO 0.03–0.7 Flow rate = 1.5–3.5 lpm 53% [23]

TiO2 0.2 Re = 5000–17000 11 [24]

TiO2 Water-EG 0.5–1 Re = 800–23000 24 [25]

Al2O3 Water Up to 2.5% Re = 750–8500 345 [26]

Fig. 1 Some applications of ANNs
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in the current investigations, the focus was on increasing 
the accuracy and optimization of the ANN structure in 
estimating the TC of NFs. For this purpose, ANN train-
ing was performed using experimental data [45] on TC of 
SWCNT (25)-CuO (75%)/Water NF based on changes in 
SVF and temperature, and then ANN output with data. 
Experiments were compared and its deviation was care-
fully evaluated. To increase the accuracy, about 400 species 
of different ANN structures have been studied and based 
on the results, the best structure was selected and its out-
put was based on the analysis of the current investigation 
(See Fig.  2). The experimental data set includes 40 data, 
but to predict the viscosity of the nanofluid in the ANN 
with two hidden layers and 10 neurons in each layer, a set 
of 400 neural network structures is designed. The results of 
this research will be used to develop the available data for 
the exploitation of hybrid nanofluids in industrial equip-
ment. The results show the importance of ANN optimiza-
tion in estimating properties and its much higher accuracy 
than the classical model.

About ANN
ANNs are mathematical tools that can model complex 
functions by mimicking the behavior of biological nerv-
ous networks. ANNs are utilized in various scientific 
courts because of their high ability to reproduce and 
model nonlinear processes. One of the applications 
of ANNs is the ability to model multivariate problems 
to solve complex problems [46, 47]. ANNs are one of 
the best nonlinear methods, due to the high accuracy 
method. ANNs are utilized to solve challenges of intri-
cate modeling like estimating and template diagnosis. 
With advances in software engineering, scientists use 
artificial intelligence software like ANNs to model vis-
cosity and TC [48, 49]. Past research review displays 
that providing an experimental relationship and design-
ing data using ANN is the appropriate method. These 
methods can replace laboratory methods. Therefore, in 
this study, for the first time, the TCR of the SWCNT-
CuO (25:75)/Water nanofluid versus temperature and 
SVF [45] was designed by ANNs. In this method, ANNs 
with lots of neurons and various transfer functions 
have been evaluated and optimal ANN is chosen. The 
most common type of used ANN to solve the regres-
sion problem is the MLP [50, 51]. Utilized ANN in cur-
rent investigation is an MLP and the utilized algorithm 
to train this network is LMA. Functions of sigmoid 
transfer were considered on neurons in the latent lay-
ers. Figure 3 displays best structure from 400 structures 
investigated to forecast TCR.

The ANN topology was proposed in Fig. 4 to design 
and TCR of nanofluid. Generally, 40 experimental 
information was utilized for ANN training. The MLP 
algorithm was also used for ANN and the TCR was 
selected as the ANN output.

Different ANN structures were analyzed to choose 
the best ANN structure. Various structure’s accuracy 
of ANNs has been presented in Table 3. The best value 

Table 2 Some modeling of ANNs for TC of nanofluids

Ref. NPs Base fluid accuracy Description

[39] Al2O3 EG R2 = 0.9997 The SVF was 0–2% by and T = 25–60° C

[40] The  Al2O3, ZnO- 
CuO

Water The proposed ANN model had up to 2% error SVF and T were considered as inputs and ANN as TC 
outputs

[41] Al2O3-TiO2- CuO (CMC) The average TC prediction data error 
was 1.6% with a maximum 5.8% error

TC of NFs does not show a significant increase for SVF 
up to 1.5%

[42] MWCNTs Oil (a-olefin) AAD% = 2.79 ANN results are compared with other models

Decene (DE) AAD% = 2.5

Distilled water 
(DW)

AAD% = 3.64

EG AAD% = 1.86

[43] ZnO EG R2 > 0.99 MLP-ANNs were used and 40 data were utilized 
for training, testing, and validation

Fig. 2 Choosing the best structure for ANNs



Page 4 of 14Esfe et al. Micro and Nano Systems Letters            (2024) 12:5 

of  R2 is 0.999903, which is related to the fourteenth 
structure in Table 3.

Results and discussion
Figure  5 displays the trend of MSE changes related to 
TCR in the selected structure from among the 400 ANN 
structures for different stages. In Fig. 5, the MSE has the 
lowest MSE in the test phase compared to other phases, 
which is 6.33377E-06 according to Eq. 1,

As mentioned, a value of  R2 close to 1 demonstrates a 
close communication between TCR laboratory informa-
tion and predicted information from ANN. According 
to correlation curves for different stages in 4 separate 
sections in Fig.  6, it can be seen that the amount of  R2 
for all information in the current ANN is higher than 
0.9. Regression coefficient results in Fig.  6a are more 

(1)MSE =
1

N

N∑

i=1

(krel |Exp − krel |Pred)
2

Fig. 3 The best ANN

Fig. 4 Flowchart to achieve the optimal ANN
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important for all data, which belongs to the last (14) pro-
posed topology and is equal to 0.9999029.

In Fig.  7, the experimental data set and TCR data 
according to different temperatures and SVFs are used 
to model the ANN. Examination of forecasted informa-
tion of ANN with outcomes of tests in 4 antiseptic parts 
shows that based on this figure, there is good agreement 
between ANN outputs and TCR tests and modeled data 
accurately predicts tests.

Figure  8 displays ANN adaptation outcomes obtained 
from training, test stages, and validation with labora-
tory tantamount information set in SVF = 0.03% to 1.15% 
through the ANN procedure. As displayed in Fig.  8, all 
points forecasted using ANN match experimental points 
that indicate high precision and suitable performance of 
ANNs in forecasting laboratory information. According 
to Fig. 8, there is a close correlation between train stages 
and all data, which shows predicted TCR data accuracy.

The comparison among the experimental information 
for TCR and the cases forecasted using ANN, simultane-
ously due to the changes of temperature and SVF, is bet-
ter shown in Fig. 9. As you can see in Fig. 9, all forecasted 
points using ANN correlate well with a laboratory data 
point, but based on the contour of the visible changes in 

Table 3 Characteristics of top 14 ANN structures

Case num Num. of hidden 
neurons

Transfer function Regression

Function1 Function2 R Train R Val R Test R

1 [1 1] Tansig Tansig 0.980636 0.990243 0.9986 0.970701

2 [1 1] Tansig Logsig 0.982659 0.983369 0.925103 0.989236

3 [1 2] Logsig Tansig 0.985406 0.981134 0.993419 0.984336

4 [1 3] Tansig Logsig 0.986581 0.990757 0.984235 0.98257

5 [2 1] Tansig Tansig 0.995615 0.997098 0.992525 0.998934

6 [2 1] Logsig Tansig 0.996408 0.997992 0.996166 0.992992

7 [2 1] Tansig Logsig 0.997169 0.997745 0.999489 0.996758

8 [2 2] Tansig Tansig 0.997928 0.99867 0.998473 0.990627

9 [2 5] Tansig Tansig 0.998127 0.999235 0.999203 0.994305

10 [2 7] Tansig Tansig 0.998351 0.998545 0.997819 0.998492

11 [2 9] Tansig Logsig 0.998588 0.999069 0.997443 0.999077

12 [2 10] Logsig Tansig 0.998746 0.999733 0.999319 0.984129

13 [3 6] Tansig Tansig 0.999819 0.999979 0.999508 0.995985

14 [5 7] Tansig Logsig 0.999903 0.999999 0.999716 0.999643
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Fig. 5 MSE in terms of latent layer neurons
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this figure, the black square area marked on the figure has 
the highest correlation between the data, which is related 
to different temperatures and SVF, and more precisely the 

SVFs between 0.23% -0.95% and temperatures between 
28 and 38 C make up this area.
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Figure  10 displays the error values in predicting TCR 
amounts of the hybrid nanofluid at different Ts. Accord-
ing to Fig. 10, the maximum error is between 0.033 and 
− 0.045. This displays high precision of TCR of the infor-
mation predicted from the ANN model.

Figure 11 shows the histogram of TCR data errors for 
the three steps in the ANN. In Fig. 11, most of the data 
errors are near the zero line and in the ± 0.02 range. The 
least error with the highest frequency belongs to the 
training stage is − 0.001422943.
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In Eq. 2, the formula for computing MOD of forecasted 
ANN information and laboratory information is pro-
vided. These data MOD at various SVFs are displayed in 
Fig. 12. MOD doesn’t exceed 3.1 to − 3.8. The validation 
stage has the lowest MOD.

(2)MOD(%) =
kPre−kExp

kExp
× 100

To evaluate the TCR of tNF, an experimental relation 
based on measured parameters for the TCR is presented 
[52]:

In Fig. 13, two methods of data forecasting, suggested 
new relationships, and ANN design are compared 
according to forecasting laboratory information. This 
comparison was performed at T = 50–33 ℃ and various 
SVFs. As displayed, the ANN procedure has a greater 
ability to forecast information. With increasing SVF and 
T, the TCR of computational data was more distant from 
experimental information, but ANN information is con-
sistent with laboratory data ANN simulation is more pre-
cise than computational data.

Conclusion
In this study, the use of an ANN to evaluate the TCR of 
SWCNT (25)-CuO (75)/Water hybrid NF is presented. 
Use of ANN was done at SVF = 0.03% and T = 28–50 ℃ 
to 1.15%. SVF and T were selected as input variables of 
ANN, while TCR values   were selected as output. To 
design the ANN, the MLP model with LMA training with 
2 transfer functions has been used. To obtain the best 
topology, many analyses of different structures of MLP 
were performed. It was found that the developed ANN 
provides a precise forecast of TCE amounts   with  R2 and 

(3)
TCR = 1+ 0.764481SVF+ 0.018689T− 0.46215
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Fig. 11 Histogram plot



Page 11 of 14Esfe et al. Micro and Nano Systems Letters            (2024) 12:5  

 SVF(%)

M
O

D
(%

)-
A

N
N

R
es

ul
ts

0 0.2 0.4 0.6 0.8 1 1.2

-8

-6

-4

-2

0

2

4

6

8

10

Train Data

0.6

-3.8

SVF(%)

M
O

D
(%

)-
A

N
N

R
es

ul
ts

0 0.2 0.4 0.6 0.8 1 1.2

-8

-6

-4

-2

0

2

4

6

8

10

All Data

3.1

-3.8

SVF(%)

M
O

D
(%

)-
A

N
N

R
es

ul
ts

0 0.2 0.4 0.6 0.8 1 1.2

-8

-6

-4

-2

0

2

4

6

8

10

Validation Data

3.1

-1.7

SVF(%)

M
O

D
(%

)-
A

N
N

R
es

ul
ts

0 0.2 0.4 0.6 0.8 1 1.2

-8

-6

-4

-2

0

2

4

6

8

10

Test Data

1.9

-3.2

Fig. 12 Margin of deviation



Page 12 of 14Esfe et al. Micro and Nano Systems Letters            (2024) 12:5 

MSE of 0.9999029 and 6.33377E-06, respectively. The 
highest frequency of MOD values   was in the range of less 
than − 3% < MOD <  + 3%. A comparison of the TCR test 
with ANN data and mathematical calculation data output 
shows the high capability and precision of ANN in mod-
eling TCR information. From the comparison and analy-
sis and examination of proposed model data compared 
to experimental data, it can be concluded that there is a 
good match between data and to save money and time, 
ANN can determine TCR of NFs with high accuracy.
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