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Microfluidic thrombosis analysis system: 
possibilities and limitations
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Abstract 

Thrombosis is a double‑edged sword. Normal thrombus formation within injured blood vessel is an important natural 
defensive mechanism to prevent excessive bleeding, whereas abnormal thrombus formation leads to critical disease 
such as stroke or myocardial infarction. One of keys in the pathophysiology mechanism involved in the thrombus 
formation is acute hemodynamic changes within the vessel lumen, which has been investigated mostly in pre‑clinical 
and clinical studies. However, studies involving animal or human subjects are frequently limited by technical dif‑
ficulties and requirement of substantial blood volume. Microfluidic systems have emerged as a valuable tool owing 
to their inherent advantages including minimal sample requirements and rapid analysis capabilities. In this mini 
review, we present a summary of microfluidic systems designed for thrombosis analysis, encompassing fabrication 
processes, design, and analysis methods. We also discuss both the potentials and limitations of microfluidic platform 
for the analysis of thrombus mechanisms.
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Introduction
Thrombus formation is a natural response to external 
stimuli or injury and also pathophysiological phenom-
enon causing critical thromboembolic diseases [1, 2]. It 
is a complex process driven by biochemical interactions 
and hemodynamic changes among blood cells, plasma 
proteins, and vessel wall [3]. Extensive research has been 
conducted to identify the underlying causes of abnormal 
thrombus formation [3]–[7]. Among these hemodynamic 
factors, shear rate is considered as a major contributor to 
thrombus formation [8]. The magnitude of the shear rate 
varies greatly with the diameter of the blood vessel, lead-
ing to variations in the mechanisms of thrombus forma-
tion (Fig. 1).

Thrombus formation at low shear rates is described by 
Virchow’s triad. Virchow’s triad is classic thrombus for-
mation mechanism comprising three key components: 
endothelial injury, hypercoagulability, and blood flow sta-
sis [1]. Stagnant flow is commonly observed in conditions 
such as aneurysms and venous valve [9]–[11]. With the 
reduced shear rates, red blood cells and platelets form 
aggregations through the FasL/FasR pathway [12] and 
fibrinogen protein [10]. It forms ‘red thrombus’ due to 
the presence of a high concentration of red blood cells.

Unlike the red thrombus, ‘white thrombus’ is common 
in thrombus in artery which is characterized by relatively 
fast and complex flow patterns [13]. It primarily consists 
of activated platelets that bind to von Willebrand factor 
(vWF) rather than fibrinogen [13]. Meanwhile, fibrino-
gen is converted to fibrin through the action of thrombin. 
Fibrin molecules polymerize and form a threadlike struc-
ture that effectively stabilizes the thrombus [14].

Understanding these thrombus formation mechanisms 
could be used to develop drugs to treat thrombosis. 
From this perspective, microfluidic systems offer advan-
tages and have become a valuable tool for dissecting the 
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mechanisms behind thrombus formation [15]. Impor-
tantly, the use of microfluidic chips allows a minimal 
amount of precious blood to be utilized. It reduces the 
burden of blood donors and shortens the analysis time 
[16]. Furthermore, microscale systems have the potential 
to enable point-of-care (POC) diagnostics for emergency 
situations [17]. Transitioning from POC potential to 
real-world application involves several important consid-
erations. In this mini-review, we present representative 
research examples of microfluidic systems for thrombus 
analysis. These examples are summarized in Table 1.

Fabrication
2D geometry
The conventional approach for producing microfluidic 
chips is soft lithography [8, 18]–[20]. It necessitates the 
creation of a master mold through a photolithography 
procedure. Subsequently, a flexible material, like polydi-
methylsiloxane (PDMS), is poured into the master mold 
and allowed to cure. Once fully cured, it is carefully 
detached from the master mold to yield a replica bear-
ing the desired pattern. Fabrication techniques employ-
ing these replicas include replica molding, micro-contact 
printing, and micro-transfer molding [19].

Replica molding generates microchannels by com-
bining a replica with a substrate. E. Westein et  al. 
[18] employed replica molding to create microchan-
nels resembling the shape of atherosclerotic plaques, 
as shown in Fig. 2a. In this method, PDMS was poured 
onto a master mold composed of SU-8 material and left 
to cure overnight. The completely cured PDMS was sepa-
rated from the master mold. Subsequently, it was affixed 

to a surface-treated glass coverslip using plasma bonding 
that effectively seals it in place.

Next, the following two methods employ replicas as 
tools in the fabrication process. In microcontact printing, 
a replica functions as a stamp for transferring molecular 
ink onto a substrate. This technique uses self-assembled 
monolayers (SAMs) to create precise molecular-level 
patterns on the substrate surface [20]. Meanwhile, micro-
transfer molding utilizes a replica as a mold to contain 
other polymer solutions. The replica is attached to the 
substrate and subsequently removed once the internal 
polymer is solidified. The micro-transfer molding mini-
mizes potential damage to the master mold [19].

Microchannels fabricated by soft lithography has sev-
eral advantages. First, master molds featuring microscale 
patterns can be efficiently produced via the photolithog-
raphy process. These master molds are reusable, enabling 
the repetitive production of replicas and thus reducing 
costs. However, it’s worth noting that most master molds 
typically have square cross-sections and differ in shape 
from human blood vessels. In addition, the creation of a 
master mold precedes the soft lithography process and 
has the limitation of simple two-dimensional structures 
to facilitate the easy removal of replicas. While three-
dimensional microchannels can be achieved by stacking 
multiple replicas, aligning these replicas is challenging.

3D geometry
Various processing techniques have been developed to 
overcome the limitations associated with soft lithography 
[21]–[26]. T. Q. Nguyen et al. employed thermal expan-
sion of air to produce microchannels with cross-sections 

Fig. 1 The mechanism of thrombus formation based on varying shear rates. Under low shear rates, thrombus primarily consists of red blood cells 
and fibrinogen, displaying red color. Elevated shear rates trigger platelet activation and lead to the aggregation of activated platelets with vWF 
and fibrin, which results in the formation of white thrombus
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resembling blood vessels [21, 22]. PDMS replicas with 
rectangular cross-sections were placed on partially 
cured PDMS and sealed by themselves. When exposed 
to a high-temperature environment, the air trapped 
within the replica expanded while the PDMS fully cured. 
This interplay between air expansion and PDMS curing 
formed semicircular cross-sectional channels. Then sem-
icircular channels were bonded to another partially cured 
PDMS layer and thermally expanded to create channels 
with circular cross-sections. There was no need of com-
plex alignment procedures.

Furthermore, a method for producing microchannels 
with circular cross-sections using fibers was developed 
[23, 24]. H. Hong et  al. aimed to replicate blood flow 
characteristics in stenotic vessels [23]. They achieved this 
by sanding the middle section of an optical fiber to create 
a stenosis section. PDMS was then poured over the pre-
pared optical fiber and fully cured. Upon removal of the 
optical fiber, a microchannel with a circular cross-section 
and a stenotic region was generated. A limitation was 
that it could only produce straight channels.

3D printing offers a convenient means to fabricate 
complex three-dimensional channels. P. F. Costa et  al. 
compared thrombus formation between healthy indi-
viduals and patients with stenosis using 3D printed chan-
nels [25]. Vascular geometry information was sourced 

from digital imaging and communications in medicine 
(DICOM) files and then used to convert 2D images of 
vascular tissues into 3D models. After casting PDMS 
into the 3D-printed mold, the mold was removed, leav-
ing behind the completed microchannel (Fig.  2b). One 
notable advantage of 3D printing technology is its abil-
ity to complete the manufacturing process in one step by 
providing geometric information [19]. However, it faces 
challenges when attempting to produce extremely fine-
sized channels due to inherent instrument limitations, 
and the resulting surface is generally much rougher com-
pared to soft lithography.

Surface preparation
In addition to manufacturing methods, it is important 
to pay close attention to the surface of the microchan-
nel that directly contacts blood. The environment of the 
surface of the channel is different from human blood ves-
sels, which can influence thrombus formation and affect 
experimental outcomes [27]. To mitigate the uninten-
tional formation of thrombi and ensure the reliability of 
experiments, researchers often explore surface modifi-
cations such as coating of anticoagulant including hepa-
rin [28]. Conversely, in specific area such as stenosis, it 
is essential to mimic a pathological condition by coating 
the area of interest with thrombotic materials. The choice 

Table 1 Summary of thrombosis research using microfluidic chips

SR shear rate, ECs endothelial cells, PIV particle image velocimetry, SEM scanning electron microscope

Control variable Magnitude of SR  [s−1] Fabrication Sample Analysis method Refs

Hemodynamics

 Low SR  < 5000 Photo‑ & Soft‑
lithography

Human blood Fluorescence microscopy
Image processing

[43, 46]

3D printing Human blood Culture of ECs
Fluorescence microscopy
Image processing

[25]

 High SR  >  = 5000 Photo‑ & soft‑
lithography

Human blood Image processing [52]

Micromilling & soft‑lithog‑
raphy

Porcine blood Light transmission detection 
system
Image processing

[5, 33]

 Gradient of SR 500–20000 Photo‑ & Soft‑
Lithography

Human blood Fluorescence microscopy
Image processing
SEM
Micro‑PIV

[3, 6, 7, 35]

 Degree of stenosis 600–29859 Photo‑ & Soft‑ Lithography Human blood Culture of ECs
Fluorescence microscopy
Image processing
Staining

[18, 22, 32, 44]

 Number of stenosis  >  = 12,000 Photo‑ & Soft‑ Lithography Human blood Image processing [4]

Biochemistry

 Kinds of thrombolytic 
agents

3500 Capillary tube Porcine blood Fluorescence microscopy
Image processing

[31]

 Dose of antiplatelet 
therapy

500–10000 Micromilling & Soft‑lithog‑
raphy

Human blood Impedance aggregometry [34]
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of thrombotic materials varies depending on the experi-
mental objectives: collagen and vWF for atherosclerosis, 
tissue factor for vascular injury, and fibrinogen at low 
shear rates [29].

Design
Laminar flow
The channels in microfluidic chips form laminar flows 
characterized by low Reynolds numbers. Similarly, natu-
ral blood flow in human vessels typically exhibits laminar 
characteristics. Shear rates play a pivotal role in platelet 
activation [30]. The magnitude of shear rates is deter-
mined by the Hagen-Poiseuille equation. Therefore, 
many previous studies introduced stenotic regions within 
microfluidic chips to achieve higher shear rates [22, 31, 
32].

M. Li and colleagues devised four microchannels, fea-
turing stenosis sections to achieve a range of shear rates 
(500, 1500, 4000, 10,000   s−1) (Fig.  3) [33]. Each tube 
served as a resistance element within the interconnected 
microchannel. The shear rate threshold for thrombus for-
mation was found to exceed 4000  s−1. Additionally, these 

microchannels were employed for a comparative study 
evaluating the effectiveness of antiplatelet drugs [34].

Another research team, led by A. Fouras and S. P. Jack-
son, focused on the investigating shear rate gradients [35]. 
They designed a microchannel consisting of three dis-
tinct regions: an acceleration region (1800 ~ 20,000   s−1), 
a peak region (20,000   s−1), and a deceleration region 
(20,000 ~ 200  s−1). Interestingly, thrombus formation was 
primarily observed in regions characterized by decreased 
shear rates. W. S. Nesbitt et  al. emphasized the role of 
platelet membrane tethers [35]. Platelet membrane teth-
ers are tail-shaped extensions originating from the plate-
let membrane and involved in platelet adhesion [36, 37]. 
Tethers undergo activation in the acceleration section 
and subsequently become more firmly coupled and stabi-
lized in the deceleration section [35].

Complex flow
As blood vessel system is branching hierarchical struc-
ture, flow pattern in the human blood vessel is not always 
laminar flow and frequently shows turbulence or com-
plex pattern. One notable example is the recirculation 
zone. It is the vortex area where activated platelets and 

Fig. 2 Microfluidic chips utilized in thrombosis research. a Microchannel created using soft lithography. Thrombus formation by perfusing blood 
into channels where endothelial cells were cultured.  Adapted from Westein et al. PNAS 2013;110(4):1357–1362 [18]. b Molds having in‑vivo shapes 
were manufactured using an SLA‑based 3D printer. Thrombus formation between healthy human vessels and patients with stenosis was compared 
by perfusing blood into PDMS channels. Reproduced from Costa et al. Lab Chip 2017;17:2785–2792 [25]
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procoagulant proteins can accumulate. Recirculation 
zones prolong the residence time of blood and serve as 
the environment for cell aggregation. Recirculation zones 
can manifest not only behind obstructions [38] but also 
at vascular branches and within aneurysms [39]–[41].

Z. Schofield and colleagues investigated the effect 
of valve stiffness on thrombus formation in deep vein 
thrombosis (DVT) [42]. DVT is a condition character-
ized by the formation of blood clots in the deep veins of 
lower legs. It is well-known that the stiffness of venous 
valves tends to increase with age. The valve stiffness cor-
relates with the recirculation area around the valve. The 
researchers manipulated the amount of photo-initiator 
(PI) during the chip fabrication process, resulting in the 
production of valves with varying degrees of rigidity and 
recirculation areas of different sizes. Notably, the size of 
the recirculation area directly influenced the retention 
and attachment of particles (Fig. 4).

However, the microenvironment of experimental par-
ticle aggregation using polystyrene particles and whole 
blood differs from the microenvironment of the actual 
thrombus formation. Incorporating complex flows 
including recirculation regions, into microchannels is 
challenging. As a result, many studies have been con-
ducted based on simulation analysis rather than physical 
experiments. Nevertheless, there remains a need for the 
thrombus formation under complex flow conditions as 
most thrombosis occurs at the site of vessels with com-
plex flow.

Analysis methods
Dynamic condition
The analysis of thrombus formation under dynamic 
conditions relies on image processing techniques, 

particularly the observation of specific cell behaviors 
using fluorescent materials. Fluorescent agents bind 
to biomarkers such as platelets and fibrin, providing 
visual insights into the thrombus formation process. 
J. Berry et  al. compared thrombus formation in single 
channels with that in pressure relief channels (Fig.  5). 
They observed the adhesion of platelets, leukocytes, 
and fibrin, each tagged with different fluorescent colors 
[43]. This method provides clear and intuitive informa-
tion about the cellular components involved in throm-
bus formation. While it is possible to employ two or 
more fluorescent markers within a single experiment, 
real-time monitoring was constrained by the choice 
of markers with similar wavelengths. Detecting cells 
using multiple colors necessitates post-processing for 
verification.

However, the use of fluorescent materials neces-
sitates specialized equipment such as a fluorescence 
microscope or confocal microscope and may affect 
thrombus formation process. J.-S. Choi et  al. achieved 
visualization and quantification of thrombus without 
fluorescent materials. They utilized a simple experi-
mental setup and image processing techniques [44]. 
Whole blood was perfused through microchannels with 
circular stenotic cross-sections. The process of throm-
bus formation within the channels was recorded using 
optical microscopy. Over time, images were extracted 
from the video and adjusted for contrast and bright-
ness to enhance thrombus visibility. The image analy-
sis revealed that thrombus formation was followed by a 
sequence of events: adhesion to the channel wall, aggre-
gation, and occlusion. Additionally, not only the throm-
bosis but also the embolization could be captured.

Fig. 3 A device designed for observing thrombus formation under high shear rates. a Design with a focus on achieving high shear rates 
in the stenosis section. b The process of thrombus formation and detachment over time.  Reproduced from Li et al. PLoS ONE 2014;9(1):e82493 [34]
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Static condition
After the blood experiments, thrombi within the 
microchannel can be examined under static conditions. 
Typically, scanning electron microscopy (SEM) [45, 46] 
and staining methods [47, 48] have been employed to 
visually study the thrombus structure. D. N. Ku group 
recently utilized the aforementioned methods to 

analyze the structure of thrombus formed under high 
shear rates (Fig. 6) [49].

Morphology
SEM was used to examine both the morphology of the 
thrombus and the density of platelets. Thrombus formed 
under maximum shear rates (exceeding 10,000  s−1 within 

Fig. 4 The accumulation of particles in the recirculation zone due to the presence of a structure resembling a vein valve over time. Valve structures 
with different photo‑initiator (PI) mixing ratios (4%, 6%, and 8%) exhibited different stiffnesses. The degree of particle aggregation and valve 
stiffness was analyzed by measuring polystyrene particles in the recirculation zone around the valve.  Adapted from Schofield et al. Commun Mater 
2020;1(65) [42]
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the stenosis section) was initially preserved using a 10% 
formalin solution. After fixation, the thrombus was sub-
merged in an ethanol solution and subsequently rinsed 
with distilled water. The prepared sample was left to 
air-dry overnight and then coated with a layer of Au 
via sputtering to facilitate SEM observation. Upstream 
and downstream of the stenosis section, non-activated 
spherical platelets were observed (Fig.  6b). In contrast, 
the middle of the stenosis displayed malformed platelets, 
which showed the effects of high shear rates.

Histology
Histological analysis was employed to explore the 
composition of the thrombus. Initially, the thrombus 

was preserved by fixation in formalin and subsequently 
embedded in paraffin. The paraffin-embedded throm-
bus was sliced to a thickness of 5 μm, and then paraffin 
was carefully removed. To distinguish various compo-
nents, including platelets, fibrin, red blood cells, and 
white blood cells, Carstairs’ staining method was used 
(Fig. 6c). Within the central region of the stenosis area, 
80% of the composition was comprised of platelets, 
with 5% being vWF and fibrin. Dense platelet aggre-
gation was observed near the channel walls. Upstream 
and downstream of the stenosis section, fibrin, vWF, 
and some inactive platelets were identified.

Fig. 5 Analysis of platelets, white blood cells, and fibrin using fluorescent materials [43]. Platelets and white blood cells were identified using 
the lipid dye  DiOC6, while fibrin was detected using fibrinogen Aleza‑546 conjugate. A comparison was made between a a single channel and b 
a pressure relief channel. c–e The beneficial impact of the pressure relief design on promoting stable thrombus formation was reported.  Adapted 
from Berry et al. Lab Chip 2021;21:4104–4117 [43]
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Future perspectives
Complex flow implementation
Microchannels exhibit low Reynolds number flow due 
to their small caliber. In contrast, human blood ves-
sels often feature complex flows characterized by high 
Reynolds numbers. Achieving high Reynolds numbers 
within microchannels demands fast flow rates, which can 
impact channel design and durability. In addition, repli-
cating intricate flow patterns, such as recirculation zones, 
within microchannels can be challenging [29, 50].

Mechanical movements
While blood vessels can contract and expand in response 
to hemodynamic changes, the geometric shape of a 
microfluidic chip allows minimal deformation despite 
being constructed from flexible materials. To repli-
cate the dynamic movements of natural vessels within 
a microfluidic system, supplementary actuators are 
required to be incorporated into the setup [51].

Biochemical interactions
In-vitro analysis systems aim to replicate in-vivo envi-
ronment while providing cost-effective and efficient 
research tools. However, processes in sample prepara-
tion may alter or influence the condition of blood. Typi-
cally, blood is treated with anticoagulants and preserved. 
Just before experiments, coagulation ability is restored 
by adding solutions antagonizing the effect of anticoagu-
lants. Although these chemical treatments are de facto 
standard in experiments, their potential influence on the 
thrombus formation should not be overlooked. Addition-
ally, it’s important to note that not all biochemical reac-
tions occurring in natural blood vessels can be replicated 
within microchannels. In-vitro analysis systems can offer 
a controlled environment tailored to specific research 
objectives.

Monitoring system
In previous studies, thrombus formation was observed in 
real-time under a microscope [5, 33, 44]. However, this 

Fig. 6 Thrombus analyzed under static conditions. a Thrombus segments within the thrombus for static analysis. b SEM images of thrombus 
formed in the microchannel. c Distribution of blood cells and proteins verified using Carstairs’ staining method.  Adapted from Kim et al. Blood Adv 
2022;6(9):2872–2883 [49]
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observation method mainly enables the assessment of 
thrombus growth in terms of area rather than volume. 
Furthermore, continuously monitoring of single area 
for an extended duration is inefficient. Despite the rapid 
occurrence of thrombus formation due to platelet acti-
vation [33], it is advisable to consider adopting a multi-
region monitoring system to enhance research efficiency.

Conclusion
This review discussed the potential of investigating 
thrombi using microfluidic systems encompassing chip 
fabrication methods, design considerations, and analyti-
cal approaches in detail. Microfluidic analysis systems 
offer numerous advantages, with a key feature being 
their ability to provide rapid and precise diagnoses with 
minimal sample volumes and offer real time observation. 
These advancements in thrombosis research hold prom-
ise for the development of treatments for thrombosis, 
including antiplatelet agents and blood analysis.
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