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Abstract 

Human-machine interface has been considered as a prominent technology for numerous smart applications due 
to their direct communication between humans and machines. In particular, wearable electronic skins with a free 
form factor have received a lot of attention due to their excellent adherence to rough and wrinkled surfaces such 
as human skin and internal organs. However, most of the e-skins reported to date have some disadvantages in terms 
of mechanical instability and accumulation of by-products at the interface between the human skin and the device. 
Here, we report a mechanically stable e-skin via a newly designed pattern named the “eyes.” The ingeniously designed 
pattern of the eyes allowed mechanical stress and strain to be dissipated more effectively than other previously 
reported patterns. E-skin permeability of by-product was experimentally confirmed through sweat removal tests, 
showing superior sweat permeability compared to conventional e-skins. Finally, the real-time monitoring of the body 
temperature was carried out using our resistive-type thermometer in the e-skin.
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Introduction
With the beginning of advanced information age, Inter-
net of Things (IoT) technologies have received much 
attention in recent decades, including human-machine 
interface (HMI), artificial intelligence (AI), and machine 
learning (ML) as a tool for info-communication between 
objects. These IoT techniques have been intensively 
investigated by many researchers due to their easy acces-
sibility, rapid data processing and wide applicability 

[1–6]. In particular, HMI technology has been high-
lighted for use in numerous smart applications (e.g. voice 
recording, touch panels, and wearable electronic devices, 
etc.) thanks to its direct connectivity between man and 
machine [7–12].

Among various types of HMI devices, wearable elec-
tronic skins (e-skins) have been considered as an emerg-
ing platform for personal electronics with their free form 
factor, which can be attached to uneven and corrugated 
surfaces such as human skin and internal organs [13–18]. 
Although the previously reported work has demonstrated 
health monitoring sensors in e-skins (e.g., electrocar-
diogram (ECG) electrodes, photoplethysmogram (PPG) 
devices, and heart rate sensors), they still have some 
issues including mechanical instability and by-product 
accumulation at the interface between the human skin 
and the device [19–21]. In detail, the e-skin attached to 
the skin becomes constantly stressed by the bending and 
stretching through body movements in daily life, leading 
to device degradation and inaccurate sensing properties 
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[22–25]. In addition, human by-products from the skin 
surface affect the attached e-skin, resulting in unwanted 
device delamination and skin troubles [26–28]. These 
problems need to be solved to sustain the lives of vulner-
able people who require continuous monitoring of their 
vital signs. For example, patients with heat allergies suffer 
life-threatening symptoms (e.g. heat stroke, heat cramps, 
heat syncope) from sudden increases in body tempera-
ture during daily activities [29–31]. The elderly, infirm 
and infants also require constant physiological monitor-
ing due to their lack of control over their body tempera-
ture [32–34].

Herein, we introduce a perforated e-skin with an eyes-
patterned structure to monitor body temperature in real 
time. The eyes-pattern in the e-skin was theoretically 
modelled using finite element analysis (FEA) simulation 
to enhance mechanical properties and sweat permeabil-
ity compared to other structures, such as auxetic kirigami 
and circular hole patterns. The resistive-type tempera-
ture sensor was fabricated at the center of a 10 μm-thick 
polyimide (PI) thin film to minimize stress localization. 
The developed e-skin maintained its mechanical and 
electrical performance under bending conditions with a 

radius of curvature of 500 μm. The sweat permeability of 
the developed device was analyzed by verifying the color 
change of litmus paper on the e-skin attached to the skin. 
Finally, we monitored the body temperature in real time 
using the resistive-type body temperature monitoring 
(BTM) patch, showing the coincidence of tendency with 
the conventional thermometer.

Result and discussion
Figure  1a shows the fabrication process and a three-
dimensional schematic of the eyes-patterned e-skin. The 
detailed process is as follows: (i) 200 nm-thick aluminum 
(Al) and 5  μm-thick polyimide (PI) thin films were 
sequentially deposited on a rigid p-type Si substrate. (ii) 
Cr and Au thin films (thickness of 50 and 300 nm, respec-
tively) were deposited and patterned by conventional 
complementary metal-oxide-semiconductor (CMOS) 
process to fabricate electrode and resistive temperature 
sensor. After covering the metal thin films with the PI 
passivation layer, a 200  nm-thick Cu etching mask with 
the desired patterns such as circular holes, kirigami, or 
eyes-patterns was fabricated on the PI surface, and then 
the whole layers were patterned by inductively coupled 

Fig. 1 a Fabrication process of eyes-patterned e-skin with BTM sensor. b Optical image of the wearable BTM sensor. c Magnified microscopic image 
of the temperature sensor in the developed e-skin
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plasma-reactive ion etching (ICP-RIE) to provide the per-
meability for the e-skin. (iii) The ultrathin 10  μm-thick 
device was attached to a temporary substrate (ther-
mal release tape; TRT), and the device was peeled off 
from the mother Si substrate through an electrochemi-
cal lift-off (ECL) process. The Al sacrificial layer on the 
mother wafer was removed by electrochemical reaction 
in 0.9 wt% NaCl solution at 3 V bias. (iv) After transfer-
ring the device to the TRT substrate, a polydimethylsi-
loxane (PDMS) adhesive layer was coated onto the back 
side of the e-skin. Finally, the temporary substrate was 
delaminated at 120 ℃ (See the Experiments section for 
a detailed description of the e-skin fabrication process). 
Figure 1b is an optical image of the fabricated eyes-pat-
terned e-skin with body temperature monitoring (BTM) 
sensor electrically interconnected with Cu wires through 
Ag paste. The Cr-based resistive temperature sensor was 
successfully fabricated on the eyes-patterned e-skin as 
shown in Fig. 1c.

Because the skin-attached e-skin is constantly stressed 
by bending and stretching motions during daily activities, 
the e-skin need to provide mechanical stability to prevent 
the device from breaking or malfunctioning [35–38]. A 
novel eyes-pattern was developed to prevent the afore-
mentioned issues in advance. Prior to the experiment, 
the mechanical stability of the eyes-pattern was theoreti-
cally analyzed by FEA simulation to compare with that 
of other patterns. To calculate the localized stresses and 
strains of the designed patterns in the e-skin, FEA calcu-
lations were performed using Ansys Workbench. Three 
typical geometric (TG) models, eyes, circular holes, and 
auxetic kirigami patterns were designed with the same 

scale in hole diameter, line width, and pattern distribu-
tion. The static structure calculation sequence was used 
to evaluate the von Mises stress using Eq. 1 below:

 where σ1 , σ2 , and σ3 are the stress components of each 
axis in three dimensions. The 45  μm displacement was 
applied to both ends of each geometry to observe the 
changes in localized stress and strain. The linear elastic 
property was used for the PI material (material density: 
1.42  g/cm3, Young’s modulus: 2.5 GPa, and Poisson’s 
ratio: 0.34).

Figure  2a depicts the calculated stress distribution 
images of the e-skins with various patterns. Less than 
30% of the applied strain conditions, all patterns in the 
300 × 300  µm2 scale (minimum line width: 12 μm, hole 
diameter: 75 μm) showed stress localization at the edge 
of the structure. However, as shown in Fig. 2b-i, the eyes-
pattern exhibited a maximum localized stress of about 
943.3  MPa, which was 48.7% and 60.8% lower than the 
auxetic kirigami (about 1839.9  MPa) and circular hole 
patterns (about 2408.8  MPa), respectively. Figure  2b-ii 
displays the localized strain of the patterns, showing that 
the eyes-pattern has the lowest localized strain of 43.11% 
compared to that of other structures (auxetic kirigami: 
74.53%, circular hole: 101.41%), shown in Additional 
file  1: Table  S1. These results indicate that the newly 
designed eyes-pattern has superior mechanical prop-
erties for stress relief and prevention of crack initiation 

(1)

σvm =

√

{(σ1 − σ2)
2 + (σ2 − σ3)

2 + (σ3 − σ1)
2

2

Fig. 2 a Simulated stress mapping images of various e-skin structures. b (i) Comparison graph of the calculated maximum stress and (ii) strain 
in three different e-skins. c Optical images of the bending test (left) and various e-skin structures (right, scale bar: 500 μm). d Bending test results 
for each of the e-skin structures
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and propagation compared to normal PI film (maximum 
strain: < 20%) [39]. In order to experimentally confirm 
the mechanical stability of the patterns, the bending test 
was performed with various radii of curvature using an 
Arduino-based bending machine, as shown in Fig.  2c. 
Figure 2d depicts that the resistance changes of the eyes-
patterned electrode were negligible due to the efficient 
stress dissipation along the entire structure, whereas the 
auxetic kirigami and circular hole-patterned e-skins were 
broken at the bending condition of 3 and 5 mm, respec-
tively. Since the minimum bending radius of the human 
body is known to be about 3.8 mm [40, 41], it is notewor-
thy that the eyes-patterned e-skin can be considered as 
an optimal structure for excellent stress-resistant wear-
able e-skin during body movements.

In order to build practical wearable devices for real-
time monitoring of vital signs, the accuracy of the sens-
ing device without malfunctioning due to accumulation 
of skin by-products at the skin/e-skin interface is critical. 
As shown in Fig.  3a, our eyes-pattern in the e-skin has 
the periodic and porous structure with auxetic kirigami 
pattern, which was predicted to efficiently remove by-
products at the skin-device interface due to similar size 
and distribution with human sweat pores [27]. To experi-
mentally verify the by-product permeability of our e-skin, 
penetration tests of sweat, one of the representative skin 
by-products, were conducted through the eyes-patterned 
e-skin and a conventional e-skin for an hour. The amount 
of sweat penetration was determined by comparing the 
color changes of the litmus paper between our e-skin and 

the conventional e-skin. Figure  3b displays the experi-
mental setup for the sweat penetration tests. The litmus 
papers on the conventional e-skin and our e-skin were 
attached to a 3 × 3  mm2-sized hole in the nitrile glove, 
which was used to accelerate the perspiration of the 
hand. Figure 3c shows the time-lapse images of the color 
changes of litmus papers attached to our e-skin and the 
conventional e-skin. Although the litmus paper on the 
conventional e-skin exhibited no color change, the litmus 
paper on our e-skin was wetted by excessive perspiration, 
showing color changes from yellow (pH 7) to green (pH 
8). This result was attributed that our e-skin prevented 
sweat accumulation [42]. The area of color change was 
quantified using ImageJ, an image analysis tool. During 
a one hour-long perspiration test, the area percentage of 
color change in the litmus paper on our e-skin changed 
to 45.04%, which was remarkable compared to that on 
the conventional e-skin (Additional file 1: Fig. S1). These 
results demonstrate that our e-skin has notable sweat 
permeability and is suitable for daily activation without 
accumulation of skin by-products.

Finally, our e-skin with excellent mechanical stability 
and sweat permeability was applied to real-time body 
temperature monitoring via a resistive-type BTM sen-
sor. The reliability of our BTM sensor was verified by 
comparison with a conventional infrared (IR) thermom-
eter (Fig.  4a). As the temperature increased from 20 ℃ 
to 90  ℃, the BTM sensor showed a linear increase in 
resistance from 204 Ω to 682 Ω, showing the same trend 
as a conventional IR thermometer (average resistance 

Fig. 3 a Sweat-permeability of eyes-patterned e-skin compared to conventional e-skin. b Optical image of the sweat-permeability test 
of the e-skins. The inset image shows a magnified microscopic image of the eyes-structured e-skin. c Color-changed images of litmus paper 
to monitor sweat permeability of e-skins (scale bar: 500 μm)
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increase ratio is 6.82 Ω  K− 1). To investigate the suitability 
of the developed wearable sensor for real-time body tem-
perature monitoring, the skin adherence test was per-
formed for periodic exercise and rest cycles. Figure 4b is 
a photograph of a 1 × 1  cm2-sized wearable BTM sensor 
attached to the skin surface of a human forearm. Despite 
periodic push-up exercises, the skin-attached e-skin 
remained stable in position with no device delamination 
(Fig. 4c). During the repeated exercise, the wearable BTM 
sensor clearly exhibited the resistance difference between 
the exercise (325.6 Ω) and rest (281.5 Ω) conditions, 
showing the same trend with the conventional IR ther-
mometer, as shown in Fig. 4d. The developed BTM sen-
sor had a similar body temperature sensing capability at 
the skin surface, while having a simpler circuit structure 
than conventional thermometers. Based on these results, 
our wearable BTM sensor with sweat permeability may 
be a potential candidate to replace conventional body 
temperature monitoring systems.

Conclusion
In summary, we have developed a novel e-skin with a 
unique eyes-pattern that provides superior mechani-
cal stability and by-products permeability. Our eyes-
pattern, which was sophisticatedly designed by FEA 
simulation, exhibited the lowest localized stress of 

943.3 MPa and strain of 43.1% compared to the previ-
ously reported patterns including auxetic kirigami and 
circular holes. While other patterned e-skins showed 
electrical malfunctions due to electrode breakdown 
under the bending radius changes from flat to 500 μm, 
our e-skin successfully maintained its electrical proper-
ties without any electrode disconnection. In order to 
confirm the permeability of the device to by-products, 
simple sweat elimination tests were performed on the 
e-skin using litmus paper. During a one-hour long test, 
the litmus paper color on our e-skin changed about 
45.04% by area due to sweat penetration, while that on 
conventional e-skins remained unchanged. Real-time 
temperature monitoring test using our eye-patterned 
e-skin was successfully performed during harsh body 
movements of periodic push-up cycles. The resistive-
type BTM sensor was formed on our e-skin, which has 
a linear resistance ratio of about 6.82 Ω   K− 1. During 
the periodic exercise and rest cycles, the wearable BTM 
sensor was stably attached to the human skin surface 
and monitored the body temperature with the same 
trend as a conventional IR thermometer. We believe 
that with our eyes-patterned e-skin, we may have pro-
posed a new approach for reliable real-time healthcare 
applications.

Fig. 4 a Temperature sensing performance of the BTM sensor. Optical images of b the BTM sensor on the forearm skin and c exercising 
with the BTM sensor. d Skin temperature was monitored by the BTM sensor during exercise compared to a conventional thermometer
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Experiments
Fabrication of the patterned e‑skin
The Al sacrificial layer was deposited on a 4-inch Si sub-
strate by thermal evaporation (VEV-503, VTS Corpora-
tion). Next, polyimide solution (PI, Sigma-Aldrich) was 
spin-coated onto the Si surface at 3000  rpm and baked 
sequentially at 110 ℃ (3 min), 130 ℃ (3 min), and 250 ℃ 
(1 h) to cure the film by evaporating the solvent. An Au 
electrode layer (300 nm) was deposited on the bottom PI 
by e-beam evaporation and patterned by conventional 
CMOS processes. A resistive metal layer (Cr, 20 nm) of 
100 × 100 µm2 was formed by interconnecting the Au 
electrodes to fabricate the BTM sensor. After coating 
the top PI layer, e-beam evaporation was used to create 
a Cu mask layer (200 nm). The ICP-RIE process was car-
ried out under optimized conditions (50  sccm  O2 flow, 
20 mTorr working pressure, 300 W ICP and 150 W bias). 
After the ECL process, the PDMS adhesion layer was 
applied to the backside of the delaminated e-skin and 
then cured at 70 ℃ for one hour.

Evaluation of mechanical properties
The Cu-wire was electrically connected to the metal pads 
of the e-skin with silver epoxy (MG Chemicals, 8331 S). 
To verify electrical performance under various bend-
ing radii from flat to 0.5 mm, a conventional linear stage 
motor (LSM-NK235603, Motorbank) and source meter 
(Keithley 2450, Tektronix) were used at 1  V bias. The 
bending curvature radius was accurately controlled from 
flat to 0.5  mm through the programmed codes in the 
bending motion system.

Evaluation of the BTM performance
The resistive-type BTM sensor was integrated into the 
e-skin. The BTM sensor attached to the forearm meas-
ured the change in resistance of the sensor during exer-
cise and reset in real time. For continuous perspiration, 
we fulfilled the push-up 30 times at each cycle and had 
5 min resting time.
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