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Abstract 

LC CMOS voltage-controlled oscillators (VCOs) with tunable inductors are essential for high-performance, multi-band 
communication systems, such as IoT applications and 5G communication. However, VCOs that use CMOS tunable 
inductors have difficulty in achieving high RF performance due to the low Q-factor of the inductor. In addition, previ‑
ously reported CMOS VCOs integrated with MEMS inductors have used CMOS switches for tuning frequency bands, 
but they also had large signal losses on the switch. Herein, we propose a CMOS VCO that is integrated with a MEMS 
tunable inductor that tunes the frequency band with three MEMS switches. The proposed MEMS tunable inductor 
enables us to achieve high RF performance due to the suspended structure, and RF MEMS switches enable lower 
signal loss than CMOS switches. In this work, we successfully fabricated the proposed CMOS VCO integrated with 
a MEMS tunable inductor using the flip-chip bonding process, and we measured oscillation frequencies according 
to the actuation of the three switches. The oscillation powers were measured as − 3.03 dBm @ 1.39 GHz, − 5.80 @ 
1.98 GHz, − 7.44 dBm @ 2.81 GHz, and − 8.77 dBm @ 3.68 GHz.
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Introduction
Recently, communication technologies, such as wire-
less gigabit (wigig) [1] and the fifth-generation cellular 
network (5G) [2, 3] were developed to cover the increas-
ing consumption of data. Also, various communication 
technologies, such as BLE, Zigbee, NFC, and WiFi, have 
been applied to multiple applications in the internet of 
things (IoT) application system [4]. These various com-
munication technologies use different communication-
frequency bands, which makes it essential to develop a 
multi-band wireless transceiver that supports multiple 
frequency bands.

LC CMOS voltage-controlled oscillators (VCOs) with 
tunable inductors have been introduced to support 
multi-band communication systems [5–9]. However, 
CMOS-based inductors integrated on LC CMOS VCOs 

had a relatively high signal loss due to the low thickness 
of the metal and the loss of the substrate. Therefore, 
MEMS-based inductors were introduced to reduce sig-
nal loss by increasing the thickness of metal in the induc-
tor and by increasing the gap between the inductor and 
the substrate [10–12]. However, the previously reported 
VCOs integrated with MEMS inductors used CMOS-
based RF switches to tune inductances have higher inser-
tion loss and lower isolation than RF MEMS switches, 
which meant that the VCOs could not be used for high 
performance RF systems [13, 14].

In this paper, we propose a CMOS VCO integrated 
with a MEMS tunable inductor for tuning multiple fre-
quency bands with low signal loss. To achieve a wide 
tuning range, we designed the MEMS tunable inductor 
as a discrete type [15–18], which varies the length of the 
inductor using RF MEMS switches. We designed the pro-
posed VCO to achieve a wide tuning range of four fre-
quency bands through integration of the MEMS tunable 
inductor. The frequency of the tunable inductor is tuned 
by three electrostatically actuated RF MEMS switches 
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and also fine-tuned by the varactor in CMOS VCO. In 
this manuscript, we successfully integrated the fabri-
cated tunable inductor on a CMOS VCO using the flip-
chip bonding process, and we demonstrated the tuning 
of four oscillation frequencies by actuating the RF MEMS 
switches of the MEMS tunable inductor.

Operation principle and design
Figure  1 shows the principle of operation of the pro-
posed VCO with an integrated MEMS tunable inductor. 
Our proposed CMOS VCO was a complementary cross-
coupled type of oscillator, and it generated the oscillation 
frequency by changing the values of the inductance and 
capacitance [9] (Fig. 1a). The three electrostatically actu-
ated RF MEMS switches (i.e., SW 1–3) integrated in the 
MEMS tunable inductor are actuated to change the effec-
tive length of the inductor into four different values by 
pulling the membrane down by electrostatic forces when 
the actuation voltage is applied to the bottom electrode 
under the membrane (Fig. 1b). When the SW3 is ON, the 
effective length of the inductor goes to minimum values 
while the effective length changes to the maximum value 
when all of the switches are in the OFF states. (Fig. 1c). 
Thus, the oscillation frequency generated by the VCO 
can be tuned extensively according to the switching states 
of the MEMS tunable inductor (Fig. 1d).

The proposed VCO consists of a CMOS VCO and the 
MEMS tunable inductor, and the suspended inductor 
is a 3D-shaped inductor with three RF MEMS switches 
for changing the effective length of the inductor (Fig. 2a, 
b). The MEMS inductor was designed as a differential 

structure to obtain a high Q value with a small size [19]. 
The structure of the MEMS inductor was suspended 
from the substrate and connected to a bottom metal line 
only through anchors to minimize the parasitic capaci-
tance between the substrate and the suspended inductor. 
The RF MEMS switch integrated on the tunable inductor 
consists of a suspended membrane, a dielectric layer, and 
the bottom electrodes. An actuation voltage is applied 
between the membrane and the bottom layer to move 
the membrane downward. The Au contact metal under 
the dielectric layer connects the separated bottom elec-
trodes of the MEMS inductor (Fig. 2c). The MEMS tuna-
ble inductor was designed to be integrated with a CMOS 
VCO by electrically connecting the metal line MEMS 
inductor to the signal line of the CMOS VCO through Au 
bumps (Fig. 2d).

Fabrication process
Figure  3 shows the process of fabricating the proposed 
tunable inductor integrated with the VCO. The starting 
wafer was a silicon wafer on which we grew a thermal 
oxide layer to reduce the loss of RF signals to the sub-
strate. First, 0.5 μm of Ti/Au was deposited for both the 
bottom electrodes of the switches and the bottom metal 
line of an inductor using a lift-off process (Fig. 3a). Then, 
a 3-μm-thick polyimide (PI) was spun and cured as a 
sacrificial layer to make the suspended cantilever-type 
switch and inductor structures. The thickness of the PI 
determines the air gap of the MEMS tunable inductor as 
well as the initial gap between the bottom metal and the 
contact metal of the switch. Accurate control of the air 

Fig. 1  Schematic illustration of the operation of the MEMS tunable inductor. a Circuit sche-matic of a CMOS VCO integrated with the MEMS 
tunable inductor. b Conceptual diagram of a VCO integrated with the MEMS tunable inductor operating at four frequency bands. The effective 
length of the inductor changes with the switching state. c The equivalent circuit model of the MEMS tunable inductor. d Power spectrum according 
to the switching states of the MEMS tunable inductor
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gap is very important because it is related to the signal 
isolation value during the OFF state of the switch as well 
as the Q-factor of the inductor. The cured PI was pat-
terned for forming dimples of contact metal that ensure 
reliable contact between the bottom metal and the con-
tact metal. Next, we deposited a 0.5  μm layer of Au/Cr 
for the contact metal using a lift-off process (Fig. 3b), and 
this was followed by the deposition of 0.2 μm of the SiN 
dielectric layer using plasma enhanced chemical vapor 
deposition (PECVD). After patterning the dielectric layer, 
we patterned the PI to form the anchors of the switches 
and an inductor (Fig.  3c). Then, we deposited a 0.2  μm 
layer of Ti/Cu as a seed layer for electroplating the thick 
metal layer, and we electroplated 4 μm of Cu as both the 
membrane of switches and an inductor using a photore-
sist as a mold (Fig.  3d). The thick metal layer helps to 
enhance the mechanical stability of the switch and reduce 
the electrical resistance of the inductor for achieving a 
high Q-factor. Then, the seed layer was removed using 
wet etchants, and the sacrificial layer was removed using 
an O2 plasma asher. Next, the tunable inductor and RF 
switches were released successfully as shown in Fig.  3e. 

A CMOS VCO was fabricated independently using a 
commercial 1-poly 6-metal, 0.18-μm CMOS technology 
[9]. Finally, we integrated the variable inductor with the 
CMOS VCO using a flip-chip bonding process. For the 
bonding process, we deposited Au stud bumps on the 
VCO pads and connected the pads of the VCO pads to 
the pads of the tunable inductor through the flip-chip 
bonding process (Fig. 3f ).

As shown in Fig.  4, we successfully fabricated the 
CMOS VCO integrated with the MEMS tunable induc-
tor. SEM images of the VCO that was fabricated shows 
that three cantilever-type RF MEMS switches, the CMOS 
VCO, and the suspended inductor were integrated suc-
cessfully in a single die. The size of the tunable inductor 
was 1200 × 600 μm, and it consisted of three RF MEMS 
switches of 170 × 80 µm. In the MEMS inductor that was 
fabricated, the suspended structures were connected to 
the bottom metals with anchors (Fig. 4a). Also, the con-
tact metal of the switch that was fabricated was formed 
beneath the dielectric layer that was used to prevent an 
electrical connection between the bottom metal and the 
membrane when the switch is in the ON state. The initial 

Fig. 2  Schematic diagrams of the proposed VCO integrated with the MEMS tunable inductor. a Schematic diagram of each component layer of the 
proposed VCO. b Schematic diagram of the proposed VCO composed of the MEMS tunable inductor with three electrostatically actuated RF MEMS 
switches, a 3D MEMS inductor, and a CMOS VCO. c Close-in image of the RF MEMS switch with a contact metal and bottom metal layer of the MEMS 
inductor. d Close-up image of the anchors that connected the MEMS inductor and the CMOS VCO
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gap between the contact metal and the metal of the bot-
tom metal was about 3 μm, which was determined by the 
thickness of the PI. The switch that was fabricated had 

a meander structure with beams that were 6  μm wide, 
which enabled it to reduce the actuation voltage below 
20 V (Fig. 4b).

Fig. 3  Fabrication process of the proposed VCO integrated with a MEMS tunable inductor. a The bottom metal layer was deposited and patterned 
by a lift-off process on a thermally-oxidized, 4-inch silicon wafer. b Polyimide as a sacrificial layer was coated on a silicon substrate, and the contact 
metal was deposited and patterned. c The dielectric layer was deposited and patterned using plasma-enhanced chemical vapor deposition (PECVD) 
and reaction ion etching (RIE), respectively. Polyimide was patterned using RIE for forming anchors. d Cu metal was formed using an electroplating 
process. e The sacrificial layer was removed using an O2 plasma etching process, and the MEMS tunable inductor was released from the substrate. f 
CMOS VCO was bonded on bottom pads that were connected to a tunable inductor using the flip-chip bonding process

Fig. 4  Scanning electron microscopy (SEM) images of the fabricated CMOS VCO integrated with the MEMS tunable inductor. a A SEM image of the 
fabricated inductor with CMOS VCO chip and pads. b A close-in image of the electrostatic RF MEMS switch and signal lines connected to MEMS 
inductor
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RF characteristics
First, we measured the insertion loss and isolation of the 
MEMS switch in the fabricated MEMS tunable inductor. 
When the switch was ON state, the insertion losses were 
−  0.221  dB at 2.4  GHz and −  0.150  dB at 5  GHz, and 
when the switch was OFF state, the isolation were meas-
ured as − 42.89 dB at 2.4 GHz and − 43.19 dB at 5 GHz 
(Fig. 5a). In addition, we evaluated the long term reliabil-
ity of the switch, and we confirmed that the switch main-
tained the performance for more than 100 million cycles 
(Fig. 5b). We also measured the Q-factor and inductance 
of the MEMS inductor. When all switches were in the 
OFF state, the Q-factors was measured as 15.6 at 2.4 GHz 
and 20.77 at 5 GHz, and the inductance was measured as 
5.27 nH at 2.4 GHz and 6.08 at 5 GHz(Fig. 6).

Finally, we measured the oscillation frequency and 
oscillation power by operating the fabricated CMOS 
VCO integrated with the MEMS tunable inductor. When 
all switches of the MEMS tunable inductor were in the 
OFF state, the oscillation frequency of the VCO was 
1.39  GHz, and the oscillation power was −  3.03  dBm. 
Then, we sequentially changed the state of switches 1, 
2, and 3 to the ON state and measured that the oscil-
lation power and frequency were −  5.80 @ 1.98  GHz, 
− 7.44 dBm @ 2.81 GHz, and − 8.77 dBm @ 3.68 GHz, 
respectively (Fig.  7). We confirmed that the oscillation 
power decreased as the oscillation frequency increased 
by changing the state of switches. These results success-
fully showed that the fabricated VCO integrated with the 
MEMS tunable inductor could be tuned to four different 
frequencies, and the VCO can be applied to mobile com-
munication devices and RF circuits that require multi-
band oscillation frequencies.

Conclusions
In this paper, we proposed and fabricated a VCO inte-
grated with a MEMS tunable inductor that tuned a wide 
range of frequency bands by electrostatically actuating 
three RF MEMS switches to achieve high RF perfor-
mances. We fabricated the MEMS tunable inductor suc-
cessfully and integrated it with a CMOS VCO through 
the flip-chip bonding process. We could implement a dis-
crete-type tunable inductor by utilizing three RF MEMS 
switches to vary the effective length of the inductor. Thus, 
the proposed VCO operated to tune a wide range accord-
ing to the switching state of RF MEMS switches and 
the applied voltages. We also designed a meander-type 
bridge of the RF MEMS switch to achieve a low actuation 
voltage, i.e., less than 20 V.

Fig. 5  Measured RF characteristics of the RF MEMS switch integrated in the fabricated MEMS tunable inductor. a Insertion loss and Isolation values 
of the switch at various signal frequencies. b Contact resistance according to the number of switching times

Fig. 6  Measured inductance and Q-factor of fabricated MEMS 
tunable inductor at various signal frequencies
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By operating the CMOS VCO integrated with the 
MEMS tunable inductor, we successfully measured 
the oscillation frequency and oscillation power, which 
demonstrated the potential applicability of the CMOS 
VCO to multi-band communication systems that 
require high RF performances and a wide tuning range.
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