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LETTER

Stereoscopic facial imaging for pain 
assessment using rotational offset microlens 
arrays based structured illumination
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Abstract 

Conventional pain assessment methods such as patients’ self-reporting restrict the possibility of easy pain monitoring 
while pain serves as an important role in clinical practice. Here we report a pain assessment method via 3D face read‑
ing camera assisted by dot pattern illumination. The face reading camera module (FRCM) consists of a stereo camera 
and a dot projector, which allow the quantitative measurement of facial expression changes without human subjec‑
tive judgement. The rotational offset microlens arrays (roMLAs) in the dot projector form a uniform dense dot pattern 
on a human face. The dot projection facilitates evaluating three-dimensional change of facial expression by improving 
3D reconstruction results of non-textured facial surfaces. In addition, the FRCM provides consistent pain rating from 
3D data, regardless of head movement. This pain assessment method can provide a new guideline for precise, real-
time, and continuous pain monitoring.
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Introduction
Clinical procedure requires quantitative and precise 
assessment of pain because the degree of pain is the 
treatment result of chronic diseases [1] or non-verbal 
monitoring in patients [2]. Repeated pain monitoring has 
poor sustainability due to the heavy workload of hospital 
nurses, whereas regular pain evaluation improves treat-
ment outcomes [3]. Pain rating methods such as Numeri-
cal Rating Scale (NRS) and Visual Analog Scale (VAS) 
often require self-report or regular visits of a medical 
team, leading to a limited application range [4–7]. The 
Wong-Baker Faces Pain Rating Scale (WBS) is widely 
utilized for facial expression-based pain assessment for 
non-communicative patients such as children or peo-
ple with intellectual disabilities [8]. The WBS estimates 
the pain intensity by comparing reference images and 

patients’ facial expression. However, conventional meth-
ods involve long assessment time, confined applications, 
or inadequateness of continuous monitoring [9].

Facial Action Coding System (FACS) proposed in 1978 
defines the specific facial muscle movements as action 
units (AUs) classifying the change of muscle move-
ments by facial expression. A well-trained expert directly 
encodes the facial expression by looking at still images or 
video of a person [10]. The Prkachin and Solomon pain 
intensity (PSPI) utilizes several AUs associated with pain, 
serving as the ground truth of pain intensity [11, 12]. 
Ambiguous and subtle movements of a human face are 
subjectively classified by human raters for pain assess-
ment using AUs [13]. Several previous works have also 
demonstrated the 2D facial expression of pain because 
the facial expression change is closely related to the pain 
intensity [9, 14]. However, the environment disturbance 
such as lighting, makeup, or eyebrow-free hinders the 
precise assessment due to 2D information of human faces 
[6, 15, 16]. Three-dimensional facial image acquisition 
further improves the pain assessment but still remains 
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in technical issues for the precise assessment [17, 18]. 
As an alternative, bioelectrical signals such as electro-
cardiograph and electromyograph contribute to the pain 
monitoring but they still require the clear explanation of 
the relationship between bioelectrical signals and pain, 
and overcome high invasiveness [3, 19, 20]. The distance 
between a stereo camera and a subject is often estimated 
by the binocular disparity [21] while non-textured sur-
faces suchas a human face lower in 3D reconstruction 
quality [22]. Recently. structured illumination driven ste-
reo camera substantially improves the binocular disparity 
for a non-textured sample [23].

Here we report a 3D face reading camera module 
(FRCM) for pain rating (Fig. 1). The FRCM consists of a 
stereo camera and a dot projector to read facialexpres-
sions in three dimensions for numerical analysis of pain.
The dot projector contains rotationaloffsetmicrolen-
sarrays (roMLAs) as a diffractive optical element (DOE), 
which allows structured illumination for compact ste-
reoscopic imaging system [24, 25].The roMLAs provide 
dense dot patterns of high uniformity and high contrast 
on a human face and efficientlyimproves the precise 3D 
reconstruction for quantifying small facial expression 
changes as well as reducing the influence of head move-
ments under pain.

Results and discussion
The FRCM involves a stereo camera (oCamS-1CGN-U, 
Withrobot, Korea) for obtaining image disparity and a 
dot projector for enhancing image quality (Fig.  2a, b). 
The dot projector contains a laser diode (L785P090, 

Thorlabs, U.S.), a collimating lens (A390TM-B, Thor-
labs, U.S.), and roMLAs as a DOE (Fig. 2b). Near infra-
red light (785 nm) from the laser diode makes the 
dot pattern invisible to the human eye for preventing 
inconvenience during pain assessment. The FRCM 
obtains clear images within 50–100 cm distance range, 
and the illumination intensity at 50  cm distance from 
dot projector is 10µW/cm2 . The dot projector meets 
the safety level of Laser class 1 defined by International 
Electrotechnical Commission (IEC 60825-1 Ed. 3.0), 
which ensures the safety of eyes and skin under dot 
projection.The roMLAs were microfabricated by form-
ing two hexagonal microlens arrays with rotational off-
set angle on both sides of a glass wafer (Fig.  2c) [24]. 
The microlenses of roMLAs show high lens curvature 
and high fill-factor to obtain a large field-of-view for 
diffraction. In particular, the rotational offset of micro-
lens arrays is set to 13.25° for creating dot patterns in 
hexagonal arrangement with high contrast and density. 
Figure 2d shows scanning electron micrographs of the 
one side of the fabricated DOE.

The 3D reconstruction of a human face is substantially 
improved by using roMLAs driven structured light illu-
mination (Fig.  3). The non-textured surface of a target 
subject often accompanies distorted or void portions in 
the reconstructed image due to information errors on 
the stereo matching algorithm. The dot projection of the 
FRCM facilitates accurate depth estimation for realizing 
the facial expression change by adding the texture on 
subject’s skin. The FRCM precisely estimates the feature 
depth within a fraction of one millimeter.

Fig. 1  Schematic illustrations of quantitative painrating using a face reading camera module (FRCM). a Concept of 3D face imagingwith the FRCM. 
A stereo camera is used to obtain depth information of a face.NIR dot projection enhances the performance of stereo matching. b Anillustration 
of conventional pain metric and pain assessment using the FRCM.The FRCM measures pain intensity using changes of facial expression 
whileconventional methods generally depend on self-reporting
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Fig. 2  Rotational offsetmicrolens arrays (roMLAs) and FRCM. a Fullypackaged FRCM. b The main components of the FRCM. A dot projector consists 
of alaser diode, a collimating lens, and a DOE. c Fabrication process of roMLAs. dSEM images of roMLAs

Fig. 3  3D point cloud reconstruction obtained from the FRCM. a 3D face imaging without dotprojection often results in incorrect stereo matching. 
Depth informationacquisition fails or is obtained incorrectly in some parts of a non-texturedsurface. b Dot projection enhances the stereo matching 
results on non-texturedsurfaces
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The numerical pain assessment was performed by using 
the Mahalanobis distance of geometric features related to 
pain. Figure  4a explains how the Mahalanobis distances 
appear in a two-dimensional space. This function fits 
for quantitative pain assessment because the weight of 
each variable should be set differently depending on its 
importance. Several distance features were selected for 
the pain intensity metric to measure the change of facial 
expression under pain (Fig.  4b). The distance features 
are designed to reflect facial expression with a signifi-
cant pain relationship such as brow lowering and upper 
lip raising [9, 18]. The weight factor of each feature was 
set to a larger value as the number of corresponding AUs 
related to pain increases [11].

The pain rating was performed while rotating a plaster 
cast (Bust of Marcus Vipsanius Agrippa), whose head size 
is similar to a real person, in order to verify tolerance to 
head motion. The pain intensities obtained without depth 
information were simultaneously calculated to show the 
rotational effect of human head. The pain rating using 
facial features extracted by the 2D images of significantly 
depends on the rotation angle while facial expression of 
the cast is relatively constant. The experimental results 
clearly indicate that pain intensities from 3D images 
are relatively consistent unlike those from 2D images 
(Fig. 5a). The substantial reduction of motion artifacts is 
very important for the quantitative and precise pain [26]. 
The evaluation of facial expression change was success-
fully demonstrated using the FRCM. A volunteer acts 
three different facial expressions representing neutral, 
moderate pain, and strong pains. The facial expression 

for strong pain shows a high value of the pain intensity 
(Fig. 5b), whose number is more continuous unlike con-
ventional methods such as NRS and WBS indicating the 
discrete value of pain. Besides, human subjective judge-
ment is not involved in pain assessment process using the 
FRCM.

Conclusions
The dot pattern illumination based on roMLAs plays an 
important role for accurate 3D reconstruction of human 
facial expression. The numerical pain analysis has been 
successfully performed by using the 3D geometric fea-
tures extracted by the FRCM. The FRCM achieves con-
sistent pain intensities regardless of face direction due 
to 3D face reading. The facial image acquisition, feature 
extraction, and analysis were separately performed in 
the process of pain assessment. This procedure can be 
further performed in real-time by employing the detec-
tion algorithm for facial landmarks. The roMLA driven 
structured illumination opens up the potential for pre-
cise 3D imaging in order to improve an automatic toolkit 
for facial expression thanks to the simple and compact 
implementation. The experimental result clearly implies 
that 3D facial imaging based on dot projection over-
comes the weaknesses of conventional pain assessment 
such as motion artifact, long assessment time, subjec-
tive decision. This new facial reading camera can provide 
a new direction for facile and real-time pain monitoring 
for advanced clinical applications.

Fig. 4  a Contour lines of theMahalanobis distance in 2D space. b Distance features for pain rating. x1, x2: from eyebrow to mouth;x3, x4: from 
eyebrow to eye; x5: mouth height; x6: mouth width;x7, x8: from eye to mouth
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Appendix
Pain intensity metric

Let xN = (n1, n2, . . . , n8) denote measured values of the 
neutral face, and let x = (x1, x2, . . . , x8) denote measured 
values of a painful facial expression. The pain intensity is 
calculated by f(x) =

√

(xN − x)TS(xN − x) · S denotes 
an eight-by-eight matrix representing importance and 
correlation of each feature defined by

where sii = c
2
i
/n2

i
 such that 

(c1, c2, . . . , c8) = (0.5, 0.5, 0.35, 0.35, 0.4, 0.4, 0.2, 0.2).
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