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Abstract 

The present research work reports on the fabrication of ultraviolet (UV) photodetectors using bismuth ferrite (BiFeO3, 
BFO) thin films with varying thickness. Using the spray pyrolysis technique, BFO thin films were deposited on the glass 
substrate at 673 K. The deposited BFO thin films were characterized by Raman and FTIR spectroscopic analysis. The 
morphological analysis reveals uniform grain distribution for the prepared BFO samples. The optical analysis reveals 
that transmittance value decreases upon an increase in the thickness of BFO thin films and the calculated optical 
band gap value lies between 2.0 to 2.3 eV. The varying thickness of the BFO active layer was stacked between ITO and 
Al electrodes and the current–voltage (I–V) characteristics of the fabricated ITO/BFO/Al devices were studied under 
dark and UV illumination (λ = 365 nm). It was observed that BFO with an optimum thickness (365 nm) exhibits higher 
photoresponsivity of 110 mA/W with an external quantum efficiency (EQE) of 37.30%. The impact of different thick-
ness of the BFO active layer, the role of adsorption and desorption of oxygen (O2) molecules upon the surface of BFO 
layers towards UV photoresponse characteristics were investigated.
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Introduction
A photodetector is an optoelectronic device that converts 
the light energy into electrical energy and has poten-
tial applications in optical communication [1], spectro-
scopic instruments [2], defense operations [3], detection 
of moving objects [4], and also in the biological field [5]. 
An efficient photodetector can be classified in terms of 
higher photoresponsivity, large  ON/OFF ratio, and low 
operating voltage [6]. Commercially available silicon 
(Si) based photodiodes have the potential in the detec-
tion of visible light. However, such Si-based photodiodes 
have demerits such as low sensitivity towards ultra-vio-
let (UV) light and high production costs involved in the 
fabrication process [7, 8]. Wide bandgap semiconductors 
such as ZnO [9], NiO [10], and TiO2 [11] based photo-
detectors were extensively studied towards UV light 

detection applications. Recent research includes study on 
ferroelectric materials such as BaTiO3 [12], BiFeO3 [13], 
Bi0.8Pr0.2FeO3 [14] and Bi(Fe,Mn)O3 [15] towards fabri-
cation of UV photodetectors [16]. In such ferroelectric 
materials, the presence of an internal electric field pre-
vents the recombination process between electron–hole 
(e–h) pairs and facilitates the separation of charge carri-
ers [17]. Among various ferroelectric materials, bismuth 
ferrite (BiFeO3, BFO) has attracted intensive interest in 
the fabrication of photonic devices [18]. BFO has a per-
ovskite rhombohedral structure, energy bandgap (Eg) of 
2.1 to 2.8  eV, a large absorption coefficient and higher 
remanent polarization [18]. The realization of high-qual-
ity BFO thin films towards device applications has been 
successfully reported by various physical methods such 
as r.f. sputtering [19], pulsed vapour deposition (PLD) 
[20], molecular vapour epitaxy (MBE) [21]. However, the 
deposition of BFO thin films using non-vacuum chemical 
route is of particular interest due to its unique advantages 
such as low-cost and large-area device processing [22].
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In the present research work, the BFO thin films with 
varying thickness were deposited using spray pyrolysis 
technique on a pre-cleaned ITO coated glass substrate. 
The effect of BFO thin film thickness on structural, mor-
phological and optical properties was analyzed. The cur-
rent–voltage (I–V) characteristics under dark and UV 
illumination were investigated. The role of adsorption 
and desorption of oxygen molecules towards the pho-
toresponse switching behavior of the fabricated BFO-
based UV photodetector were investigated.

Experiment
Materials used
Bismuth nitrate pentahydrate (Bi (NO3)3. 5H2O, Merck, 
99%), iron (III) nitrate nonahydrate (Fe (NO3)3. 9H2O, 
Merck, 99%), and citric acid (C6H8O7, purity ≥ 99.5%) 
were used as precursors source. Nitric acid (HNO3) and 
deionized water were used as a solvent.

Deposition of bismuth ferrite (BFO) thin films
For the preparation of bismuth ferrite (BFO) thin films, 
0.33  M equimolar concentration of bismuth nitrate 
pentahydrate (Bi(NO3)3. 5H2O) and ferric nitrate 
nonahydrate (Fe(NO3)3. 9H2O) was dissolved in 30  ml 
deionized water independently and allowed to continu-
ously stir at room temperature for 1 h. Secondly, 10 ml 
of dilute nitric acid (HNO3) was added dropwise to the 
prepared (Bi (NO3)3. 5H2O) base solution and stirred 
for 15 min. Finally, 0.33 M of citric acid as a chelating 
agent was added to the solution and stirred for 30 min. 
The prepared homogeneous solutions were used to 
deposit BFO thin films by spray pyrolysis method. 
The glass substrates were cleaned using detergent and 
deionized water. Further, ultrasonic cleaning was car-
ried out for 30 min using a mixture of isopropyl alcohol 
(IPA) and HNO3 solution. The cleaned glass substrate 
was preheated at 423  K before the deposition of BFO 
thin film. The substrate temperature was maintained at 
673 K with the fixed air pressure of 2 mbar. The solution 
flow rate was 5 ml min−1 and the nozzle–substrate dis-
tance was fixed at 15 cm. The prepared BFO thin films 
were post-annealed at 623  K for 1  h under ambient 
atmosphere. To investigate the impact of the different 
thickness of BFO thin films in the device performance, 
the volume of the precursor solution while spraying 
was varied as 10, 15, and 20  ml and the samples were 
coded as BFO(10), BFO(15) and BFO(20) respectively. 
The thickness of the deposited BFO thin films was 
measured using the Stylus profilometer (DEKTAK XT 
Stylus Profiler- Bruker, USA) and the value was meas-
ured as 243 ± 7, 365 ± 15 and 660 ± 12 nm for BFO(10), 
BFO(15) and BFO(20) respectively. The structural study 
of BFO thin film samples was investigated by Raman 

spectra using BRUKER RFS 27: Standalone FT-Raman 
Spectrometer. The surface morphology BFO thin film 
samples were performed by High-Resolution Field 
Emission Electron Microscope system (FEI Quanta 
FEG 200-High). The Fourier transform infrared spectra 
(FTIR) spectra of the thin film samples were performed 
using IR Tracer–100-Shimadzu and optical properties 
were analyzed using UV Visible Spectrophotometer 
(Thermo scientific Evolution 201).

Device fabrication
For the fabrication of BFO-based UV photodetector 
devices, the following steps were processed: indium tin 
oxide (ITO) was deposited on the ultrasonically cleaned 
glass substrate (2.5 cm × 2.5 cm) using the r.f magnetron 
sputtering method. Commercially purchased ITO tar-
get (99.9% purity, 2 inch, Able targets, China) was used 
during the sputtering technique. Highly transparent and 
electrical conducting ITO thin films (90 Ώ/cm) were 
used as a back electrode for the proposed device. BFO 
with different thickness (243, 365 and 660) were depos-
ited upon the ITO layer using the spray pyrolysis method 
at 673 K. Aluminum (Al) was deposited as a top electrode 
using an electron beam evaporation (EBE) approach. 
Figure  1 shows the schematic diagram of the fabricated 
device structure (ITO/BFO/Al). The current–volt-
age (I–V) characteristics of the proposed ITO/BFO/Al 
device under dark and UV illumination were measured 
using the Agilent B2901A source measuring unit (SMU) 
using a scan rate of 0.06  V/ms. The source of UV light 
is the commercially purchased monochromatic UV lamp 
(Wavelength ƛ = 365 nm and power = 4 mW/cm2). The 
photograph of the fabricated ITO/BFO/Al photodetector 
and experimental set up used to study the photosensing 
characteristics is included as supplementary information 
(see Additional file).

Fig. 1  Schematic diagram of ITO/BFO/Al photodetector
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Results and discussion
Raman spectroscopic analysis
Figure  2 shows the Raman spectroscopic analysis for 
(a) BFO (10) and (b) BFO (15). The space group of the 
BFO material is R3c and group theory predicts that 
BFO should have 13 Raman-active phonon modes sum-
marized as Ѓ = 4A1 + 9E; where A1 and E represent the 
symmetry in rhombohedral distorted structure [23]. In 
the present study, four optical transverse A1 symmetry 
[A1(TO)] and six optical transverse E-symmetry [E(TO)] 
phonon modes were recorded. The Raman modes posi-
tioned at 122, 171, 221 and 432  cm−1 can be assigned 
as A1–1, A1–2, A1–3 and A1–4 modes respectively. The 
other six modes positioned at 77.6, 113, 278, 348, 485 
and 560  cm−1 can be assigned as E–1, E–2, E–4, E–5, 
E–7 and E–8 respectively. The low-frequency modes cor-
respond to bismuth (Bi) and oxygen (O2) vibrations and 
the higher frequency modes correspond to Fe–O vibra-
tions [24]. The Raman active modes observed in the 160 
to 365 cm−1 range were related to the atomic motion of 
Fe and O2 molecules in the FeO6 octahedron of BFO [25]. 
Raman active modes that are identified above 500 cm−1 
are ascribed to the stretching vibrations of oxygen atoms 
[26–28].

FTIR analysis
Figure  3 shows the FTIR spectra for the BFO (10) and 
BFO (15). The observed bands located at 646 cm−1 and 
828 cm−1 are due to the overlap of Bi-O and Fe–O groups 
[29]. These bands are due to the bending vibration of the 
Fe–O bond within the octahedral unit of FeO6 and BiO6 

groups [30]. The characteristic peaks located at 506 cm−1 
were related to O–Fe–O bond stretching and Fe–O 
bending of the FeO6 group [31].

Morphological analysis
Figure 4a–c shows the field emission electron microscopy 
(FESEM) morphological analysis of BFO (10), BFO (15), 
and BFO (20) thin films. It was observed by an increase in 
the thickness of BFO thin films the morphology appears 
to be more uniform and less porous. For BFO (20) thin 
films with a higher thickness (~ 660 nm), the probability 
for dislocation density and stacking fault increases, and 

Fig. 2  Raman spectroscopy analysis of BFO (10) and BFO (15) thin films

Fig. 3  Fourier transform infrared spectroscopy of BFO (10) and BFO 
(15) thin films
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hence the stress in BFO (20) thin films increases [32]. As 
a result, the grain size of BFO (20) gets reduces signifi-
cantly as observed in Fig. 4c.

Optical properties
Figure  5a exhibits the optical transmittance spectra 
of BFO (10), BFO (15), and BFO (20) thin films in the 
wavelength spectrum of 350–1800  nm. An average 
transmittance between 25 and 60% in the visible region 
was observed for all the prepared BFO thin films. The 
bandgap energy of BFO thin films was determined by 
extrapolating the linear part of the tauc’s graph as shown 
in Fig. 5b. The calculated optical band gap energy values 
were found to be 2.3  eV for BFO (10), 2.2  eV for BFO 
(15), and 2.1 eV for BFO (20). The observed decrease in 
the value of the bandgap upon an increase in the thick-
ness of the BFO thin films may be due to the increase in 
grain size of the samples and also due to an increase in 
the crystallinity of the films [33, 34].

Current–voltage (I–V) and photoresponse switching 
characteristics
Figure  6 exhibits the current–voltage (I–V) character-
istics of the fabricated (a) ITO/BFO(10)/Al, (b) ITO/
BFO(15)/Al and (c) ITO/BFO(20)/Al based photo-
detector under dark and UV exposure. The obtained 
I-V characteristic of the fabricated UV photodetector 
shows linear Ohmic behavior [18]. Notable important 
parameters to determine the performance of UV pho-
todetector includes photoresponsivity (R) and external 
quantum efficiency (EQE) and were calculated using 
the following Eqs. (1) and (2) respectively [35]

where IUV and Idark signify the value of current meas-
ured under UV exposure and dark conditions and Pinc 

(1)Photoresponsivity (R) =

IUV − IDark

Pinc

Fig. 4  FESEM micrographs of a BFO (10), b BFO (15) and c BFO (20) thin films
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represents the power of the incident UV light source 
(4 mW/cm2).

Table  1 reveals the UV photoresponse properties of 
ITO/BFO(10)/Al, ITO/BFO(15)/Al and ITO/BFO(20)/Al 
based photodetectors. Variation in the obtained photore-
sponse properties among the fabricated devices shows 
that the thickness of the active layer plays one of the vital 
parameters towards the realization of an efficient pho-
tonic device [36]. Among the fabricated devices, ITO/
BFO(15)/Al photodetector with an optimum thickness 
of BFO (365 nm) showed higher photoresponsivity (R) of 
110 mA/W with an external quantum efficiency (EQE) of 
37.30%. The reason for the obtained low photoresponse 
characteristics at higher BFO thickness (~ 20  ml) of the 
active layer is due to the limitation in the penetration 
depth of incident UV photons [37]. It is reported that UV 
photons interact predominantly with the surface of the 
active layers for an optimal penetration depth (~ 300 nm) 
and such a thin surface of the active layers contributes 
towards photoconductivity mechanism [38]. In addi-
tion, the photodetector with a thick active layer results in 
the formation of a small depletion region which tends to 
capture fewer incident photons. Thus, ITO/BFO(20)/Al 
photodetector with thick active layer shows low photore-
sponse characteristics. On the other hand, the obtained 
less photoresponse property for ITO/BFO(10)/Al photo-
detector may be attributed due to the formation of a low 
internal electric field in the BFO(10) active layer [39]. Fig-
ure 7 shows the time-dependent photoresponse switching 
characteristics of (a) ITO/BFO(10)/Al, (b) ITO/BFO(15)/

(2)

External quantum efficiency (EQE) =
R

Iincident
× hc× 100%

Al and (c) ITO/BFO(20)/Al based devices at a bias volt-
age of 3 V under dark and UV illumination (λ = 365 nm 
and 4  mW/cm2). When the BFO-based photodetector 
was exposed to UV light, the photocurrent rises dra-
matically and the photocurrent steadily decreases to its 
original level when the light is turned off. When the light 
is irradiated on the BFO based photodetector, electron–
hole (e–h) pairs are generated and these photogenerated 
charge carriers move towards the opposite electrode to 
contribute to the external photocurrent. The rise time 
and recovery time for ITO/BFO(15)/Al photodetector 
were calculated as 6 and 17 s respectively. Figure 8 shows 
the working mechanism of ITO/BFO/Al photodetec-
tor based on oxygen adsorption and desorption process 
under dark and UV illumination. During the dark con-
dition, an oxygen molecule is adsorbed by capturing the 
free electron from the BFO thin film surface and forms 
a depletion layer near to the surface of BFO. The for-
mation of the depletion region significantly reduces the 
electrical conductivity of BFO layers. The electron–hole 
pairs (e–h) are produced when the ITO/BFO/Al photo-
detector is illuminated with UV light with the condition 
Ehv > EBFO. Such photogenerated charging carriers are 
driven into the field path by the external bias and neutral-
ize the adsorbed oxygen. The width of the depletion layer 
will now decrease and the electrical conductivity of BFO 
thin surface increases under the UV illumination condi-
tion [23, 29, 40–42]. However, it can be observed that the 
obtained photoresponse characteristics of ITO/BFO/Al 
photodetector do not show a steady-state condition. Such 
an exponential increase/decrease of photocurrent value 
with an unsaturated response is termed as persistent 
photoconductivity (PPC) effect [43]. Such effect occurs 

Fig. 5  a Transmission spectra of BFO thin films for BFO (10), BFO (15) and BFO (20) and b Tauc plot of BFO (10), BFO (15) and BFO (20) thin films
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when the re-adsorption of O2 molecules takes place in 
addition to the desorption process under UV exposure of 
the fabricated photodetector. Hence, during UV illumi-
nation conditions, the generation of electron holes pairs 
and a simultaneous oxygen re-adsorption process results 

in unsaturated photoresponse characteristics [46, 47]. 
Similarly, during a dark condition, the slower re-adsorp-
tion rate results in prolonged unsaturated recovery time 
[43, 44]. The present analysis correlates the role of oxygen 
adsorption and desorption process under UV light and 

Fig. 6  Current–voltage (I–V) characteristics of the a ITO/BFO (10)/Al, b ITO/BFO (15)/Al and c ITO/BFO (20)/Al

Table 1  UV photoresponse properties of the fabricated BFO (10), BFO(15) and BFO (20) photodetector

Sample Thickness Photo 
responsivity 
(mA/W)

Dark current 
(mA)

Photo current 
(mA)

External quantum 
efficiency (EQE) %

Rise time (s) Fall time (s)

BFO (10) 243 ± 7 nm 80 4.14 4.46 27.10 9 ± 0.15 22 ± 0.14

BFO (15) 365 ± 15 nm 110 3.48 3.91 37.30 6 ± 0.41 17 ± 0.39

BFO (20) 660 ± 12 nm 42 2.21 2.38 14.20 11 ± 0.17 27 ± 0.14
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dark towards the understanding the photoconductivity 
mechanism of ITO/BFO/Al photodetectors. Table 2 dis-
plays the UV photoresponse properties of the fabricated 
ITO/BFO/Al photodetector compared to earlier studies 
on BFO-based UV photodetectors.

Conclusion
The analysis correlates the role of the thickness of the BFO 
active layer towards the realization of an efficient UV pho-
todetector. The various thickness of BFO thin films was 
deposited using spray pyrolysis technique and character-
ized by Raman spectroscopy, FTIR analysis. The morpho-
logical and optical analyses were investigated. The BFO 
active layer was stacked between Al and ITO electrodes 
and the current–voltage (I-V) characteristics of the fab-
ricated ITO/BFO/Al were analyzed under dark and UV 
illumination (λ = 365  nm). The I–V analysis showed that 

Fig. 7  Time-dependent photoresponse switching characteristics of the a ITO/BFO (10)/Al, b ITO/BFO (15)/Al and c ITO/BFO (20)/Al

Fig. 8  The working mechanism of ITO/BFO/Al photodetector based 
on oxygen adsorption and desorption process under dark and UV 
illumination
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BFO with an optimum thickness (365 nm) exhibits higher 
photoresponsivity of 110  mA/W with an external quan-
tum efficiency (EQE) of 37.30%. The BFO (15) based device 
exhibits fast photoresponse characteristics with the rise 
time of 6 s and decay time of 17 s.
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Additional file 1. The photograph of the fabricated ITO/BFO/Al photode-
tector and experimental set up used to study the photosensing character-
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Table 2  UV photoresponse properties of the fabricated ITO/BFO/Al photodetector in comparison with the earlier reports 
on BFO-based photodetectors

Device Structure Deposition 
technique 
of BFO active 
layer

Device configuration Photo 
responsivity 
(A/W)

Rise time Fall time Working mechanism Refs

ITO/ZnO/BFO/PEDOT:PSS Spin coating Metal/semiconductor/
ferroelectric/metal

0.04 9 s 6 s Formation of the deple-
tion region at the ferro-
electric/semiconductor 
junction and the role of 
n + /n BFO junction in 
the detection of white 
light was investigated

[13]

ITO/BFO/Ag Hydrothermal 
and post-
sintering 
process

Metal/ferroelectric/metal 0.6 × 10–3 10 s 0.6 s Thermo-phototronic 
effect induced electron 
transfer in the BFO film 
for the detection of UV 
radiation (λ = 365 nm)

[45]

Ag/CH3NH3PbI3/BiFeO3/
ITO

Spin coating Metal/organic semicon-
ductor/ferroelectric/
metal

2 0.74 s 0.08 s Formation of 
CH3NH3PbI3/BiFeO3 
heterojunction for 
infrared photodetector 
(λ = 800 nm)

[46]

BFO/LaAlO3/(La,Sr)MnO3 PLD Ferroelectric/metal 1.8 × 103 6.97 ms 1.27 ms Role of charged domain 
walls (CDWs) confined 
in (BFO) nanoislands for 
detection of visible-
infrared spectrum

[6]

Pt/BFO PLD Metal/ Ferroelectric - 25 s 19 s Role of in-plane platinum 
(Pt) electrode configu-
ration for light detec-
tion using Halogen 
source

[47]

ITO/BFO/Al Spray pyrolysis Metal/ferroelectric/metal 110 6 s 17 s Oxygen adsorption/des-
orption process upon 
the surface of BFO and 
thickness dependence 
characteristics of the 
BFO layer towards UV 
photodetection were 
analyzed
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