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controllable particle delivery
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Abstract 

In this study, we demonstrate an on-demand delivering and sequential arraying of single microparticles utilizing 
multiple pneumatic pressure-driven elastomer valves and a deterministic particle arraying mechanism. Two types of 
separate microfluidic devices are combined: (i) a particle transfer device and (ii) a particle arraying device, to construct 
a desired particle pattern. The elastomer valve integrated in the transfer device acts as a removable particle trap that 
enables the trapping and on-demand releasing of a particle depending on the application of the pneumatic pressure. 
The arraying device is composed of highly packed particle trapping sites to deterministically array incoming particles 
that are released and transferred from a transfer device. Repeating the “trapping-transfer-and-array” sequence can 
construct an array of different types of particles in a certain pattern. One-dimensional linear and two-dimensional 
planar microparticle-based patterns were demonstrated using bare and red-fluorescent microparticles.
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Introduction
Recently, particle-incorporated microfluidic platforms 
have emerged as effective tools to conduct various anal-
yses in biological and chemical research fields [1–5]. 
When compared with flat substrates or supports, micro-
particles can serve as a mobile substrate and provide 
multiple functionalities including huge analytical surface 
and the capability of effective mixing, sorting, and trans-
porting of molecules of interest [6]. For most cases in 
these platforms, particles are trapped in an array format 
within microchannel networks with embedded physical 
barrier structures (e.g., weirs or micropillars) or external 
active forces (e.g., electric forces). Depending on the tar-
get applications, surfaces of particles can be functional-
ized (e.g., DNA or antibody conjugation). To construct 
the particle array, the particles (i.e., array elements) are 
introduced from an off-chip environment and subse-
quently arrayed within microfluidic devices [7–11].

Generally, different types of functionalized particles are 
arrayed randomly to perform analyses; thus, the encod-
ing and decoding of individual particles must be per-
formed for their identification and readout of the results 
after their reactions (i.e., mix-and-match). Although 
several strategies for particle encoding exist [12–14], 
a high-resolution imaging system is typically required 
to identify individual particles based on their encod-
ing method. Meanwhile, a position-based signal readout 
method facilitates an easy readout of the results such as 
the wellplate-based enzyme-linked immunosorbent assay 
(ELISA). Thus, the advantages of particle-based analysis 
and position-based easy readout can be combined in an 
integrated system.

Several studies have been carried out to generate spe-
cific particle patterns using microfluidic platforms. A 
1-D microfluidic bead array was constructed by depos-
iting particles one by one using vacuum tweezers [15, 
16]. This approach can form a desired particle pattern 
in predefined channels, but is a cumbersome process. 
As an alternative approach, an additional microbead 
loading channel was integrated to deposit the func-
tionalized microparticles into predetermined positions 
[17, 18]. This requires additional components and has 
limitation to enable a single particle level patterning. 
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Without using physical trap structures, dynamic parti-
cle patterning was demonstrated using standing surface 
acoustic waves (SSAWs) [19, 20]. However, complicated 
device fabrication and system setup are required.

In this regard, we present a method to construct 
a particle array in a desired pattern (i.e., patternable 
particle array) instead of a random pattern, to enable 
a position-based easy readout using different types of 
particles with a single-particle-level resolution. Our 
strategy combines two types of separate microflu-
idic devices that offer different functions: (i) a particle 
transfer device and (ii) a particle arraying device. Pneu-
matic microvalve-based removable trap techniques and 
deterministic particle arraying techniques are used in 
the transfer and arraying devices, respectively. A trans-
fer device can selectively transfer the particles of inter-
est; these can be patterned in the arraying device in a 
desired pattern. Many studies have demonstrated parti-
cle manipulation (e.g., trapping, releasing, and pairing) 
using pneumatic pressure-driven elastomer microv-
alve structures [21–25]. Depending on the state of the 
valve (i.e., either “on” or “off”), particles can be either 
trapped or released. An arraying device can capture the 
introduced particles deterministically (i.e., from the 
transfer device) based on flow fractionation [10, 26]. 
As a proof-of-concept of our method, we demonstrated 
particle patterns of one-dimensional (1D) linear (e.g., 
“dot-dash” line) and two-dimensional (2D) planar (e.g., 

Braille numbers) using bare and red-fluorescent poly-
styrene particles.

Materials and methods
Device design and operation
To demonstrate on-demand single particle delivery and 
the sequential arraying of particles, two types of micro-
fluidic devices are integrated: (i) a particle transfer device 
and (ii) a particle arraying device (Fig. 1a). The outlet of 
the transfer device and the inlet of the arraying device are 
connected using a tube for particle transfer. The particle 
transfer device is composed of pneumatic pressure inlets, 
particle inlets, wastes, and an outlet. A pneumatic chan-
nel is used to operate the elastomeric pneumatic microv-
alve. The particle arraying device is composed of an inlet, 
a particle arraying site, and an outlet.

In the transfer device, particles are introduced through 
the particle inlet and abundant particles are washed out 
toward waste. The particle transfer function can be ena-
bled by operating the elastomeric pneumatic microvalve 
that acts as a removable particle trap depending on the 
applied pneumatic pressure [25]. When a positive pneu-
matic pressure is applied through the pneumatic channel, 
a thin membrane (i.e., channel wall) is deflected and as a 
result, a narrowed branch pocket that can trap a single 
particle is formed (Fig. 1c). The pillar structure can guide 
the particles to migrate close to the channel wall; this 
facilitates particle trapping [27]. Once a single particle 

Fig. 1  Device design and operation mechanism. a Schematic illustration of the particle transfer device and particle arraying device. b Sequential 
particle arraying mechanism. Incoming particles are sequentially arrayed at each vacant trap site based on flow fractionation. c Single particle 
trapping by pneumatic microvalve operation. Channel wall is deflected by applied pneumatic pressure and it can trap a single particle. d Once a 
single particle is trapped, subsequent particles bypass the trap and migrate toward the waste. e Trapped single particle can be released by removal 
of the applied pneumatic pressure
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is trapped, subsequent particles will migrate toward the 
waste without any additional trapping (Fig.  1d). The 
trapped particles can be released and transferred to 
the arraying device in an on-demand manner when the 
applied pneumatic pressure is removed (Fig. 1e).

The target particle can be transferred from the trans-
fer device to the arraying device through the tube con-
nection. Based on the flow fractionation at each vacant 
trap sites (i.e., flow is distributed into main flow Qm and 
trapping flow Qt), the transferred particle is trapped 
deterministically at each vacant trap site (sequentially 
from upstream to downstream) of the particle arraying 
device (Fig. 1b) [26]. By repeating the “trapping-transfer-
and-array” sequence, we can construct the particle array 
in a controllable manner (i.e., patternable particle array). 
We can select specific particles to be transferred using 
different types of particle suspensions at different parti-
cle inlets. The numbers of particle inlets and pneumatic 
pressure inlets can be varied based on the types of parti-
cles that are arrayed.

Device fabrication
Both microfluidic devices were fabricated using polydi-
methylsiloxane (PDMS) (Sylgard 184, Dow Corning Inc.) 
by standard soft lithography [28]. Negative tone photore-
sist (KMPR 1025, MicroChem, Inc.) was used to prepare 
the master molds. It was deposited onto two four-inch 
silicon wafers with the same thickness (32  µm) by spin 
coating and soft baking (100  °C for 15  min). Ultraviolet 
(UV) exposure through a photomask and post-exposure 
baking (100 °C for 3 min) and development (SU-8 devel-
oper, MicroChem, Inc.) were proceeded to define the 
patterns.

Two different PDMS prepolymer mixtures (i.e., differ-
ent PDMS monomer base to crosslinker ratio) were used 
to prepare PDMS replicas using the master molds: (i) 12:1 
w/w ratio mixture for the particle transfer device and (ii) 
a 10:1 w/w ratio mixture for the particle arraying device. 
Regardless of the PDMS mixture ratio, PDMS replicas 
were prepared by the same procedure. The PDMS mix-
ture was poured onto the master mold and degassed; this 
was then thermally cured at 100 °C for 20 min. The cured 
PDMS replica was peeled off from the master mold and 
holes were punched using a disposable biopsy punch. The 
holes were rinsed with isopropanol. The PDMS replica 
and glass substrate were irreversibly bonded by contact 
after air plasma treatment (CUTE-MP, FemtoScience). 
The prepared devices were stored at room temperature 
for 24 h for a reliable device operation.

Experimental setup
For system operation, separate custom-built pneumatic 
pressure supply systems are used: (i) positive pressure 

supply system to operate the elastomeric valve and infuse 
particles and (ii) a negative pressure supply system to 
facilitate particle transfer and arraying. A positive pres-
sure application system (connected with the pneumatic/
particle inlet of the transfer device) consists of a pressure 
pump (i.e., positive pressure generation), solenoid valves, 
a pressure regulator, and a pressure monitor. A negative 
pressure application system (connected with the outlet 
of the arraying device) consists of a pressure pump (i.e., 
negative pressure generation), pressure regulator, and 
pressure monitor. Microscopic images were acquired 
using an inverted microscope (IX 73, Olympus) with 
a charge-coupled device (CCD) camera (DP80, Olym-
pus). For fluorescence detection, a SOLA light engine 
(SM 365, lumencor) and filter cube (U-FGWA, Olym-
pus) were used as the light source and fluorescence filter, 
respectively.

Results and discussion
1D linear patterning of particles
On-demand single particle release and delivery was dem-
onstrated with elastomeric microvalve operation. The 
valve deflection state (i.e., ON or OFF) can be controlled 
using the applied pneumatic pressure and solenoid valve 
operation (Fig.  2a). When the valve state is “ON” (i.e., 
the wall of the valve is deflected under the application of 
pneumatic pressure), a single particle can be trapped at 
the narrow channel created by valve deflection (Fig. 2b). 
The average diameter of the particle used in this test was 
approximately 25  μm. Particle suspensions were intro-
duced into the particle transfer chip under a pneumatic 
pressure of 5 kPa. To trap a single particle, we applied a 
pneumatic pressure of 200 kPa to deflect the wall of the 
microvalve. After particle trapping, subsequent particles 
passed the valve and migrated toward the waste chan-
nel owing to a sudden increase in hydraulic resistance of 
the channel through the microvalve. When the applied 
pneumatic pressure was removed by triggering a solenoid 
valve (switching time of 100 ms) in an on-demand man-
ner, the trapped single particle was selectively released 
and migrated to the outlet of the transfer device (Fig. 2c). 
This particle was subsequently transferred to the parti-
cle arraying device under an applied vacuum pressure of 
− 15 kPa at the outlet of the arraying device.

1D linear particle patterning was demonstrated 
using two types of particles: (i) bare polystyrene beads 
(mean diameter ≈ 25  μm; SD: ± 0.21  μm, Sigma-
Aldrich), (ii) red-fluorescent polystyrene beads (mean 
diameter ≈ 25  μm; SD: ± 0.20  μm, excitation/emis-
sion = 530/607  nm, microParticles). Concentrations of 
particle suspensions were set to 10,000 particles/mL for 
both particle types. By repeating the “trapping-trans-
fer-and-array” sequence (i.e., one time red-fluorescent 



Page 4 of 6Lee et al. Micro and Nano Syst Lett            (2019) 7:10 

particle and two times bare particles) using individual 
solenoid valve triggering, we can construct a line pattern, 
as shown in Fig. 3a. The fluorescence image reveals that 
the particle line pattern is constructed as a “dot-dash” 
line (Fig. 3b).

2D planar patterning of particles
The multiple row patterning of 1D particle lines can yield 
2D planar particle patterns. Selective and on-demand 
particle transfer and sequential arraying of particles were 
used similar to the 1D linear particle patterning method 
described above. Inspired by Braille patterns (Fig.  4a), 
which are used by the visually impaired, we constructed 
2D particle patterns to display Braille numbers using con-
trollable transfer and arraying of bare and red-fluorescent 
particles (Fig.  4b). Fluorescence detection revealed that 
several Braille number patterns (1, 2, 3, 4, and 5) were 
displayed by the proper combination of particles (Fig. 4c). 
Schematic of generating Braille-inspired particle patterns 

in the particle arraying device are described in Additional 
file 1: S1.

Conclusion
In this study, we demonstrated a patternable particle 
microarray by trapping, releasing, transferring, and 
sequentially arraying two types of particles. A parti-
cle transfer device and a particle arraying device were 
combined to construct desired particle patterns. In 
the particle trapping device, the integration of a pneu-
matic pressure-driven elastomer microvalve enabled 
single-particle trapping and selective, on-demand 
releasing of particles of interest. The released parti-
cle was transferred to the arraying device and subse-
quently trapped at vacant sites sequentially from the 
upstream direction. 1D linear (e.g., “dot-dash” line) 
and 2D planar (e.g., Braille numbers) particle patterns 
were constructed in a controllable manner by repeat-
ing the “trapping-transfer-and-array” sequence. Even 
though we demonstrated particle patterns using two 

Fig. 2  On-demand particle transfer utilizing pneumatic valve operation. a Depending on the applied pneumatic pressure, the valve wall is either 
deflected (“ON” state) or not (“OFF” state). These two states are switchable by controlling the integrated solenoid valve. b Particle trapping. Single 
particle is trapped at the narrow channel created by valve deflection. c Particle releasing. Removing the pneumatic pressure allows the trapped 
particle to be released and transferred in an on-demand manner
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types of particles (i.e., bare and red-fluorescent parti-
cles), more complex particle patterns can be achieved 
with different types (e.g., > three types) of particles by 
operating additional particle inlets. The programmable 
operation of multiple pneumatic valves can facilitate 
the construction of desired particle patterns composed 
of different types of particles. We believe that the par-
ticle patterning technique presented herein has poten-
tial for various applications such as microarrays, drug 
screening, and cellular studies. Furthermore, proper 
integration of functionalized particles (e.g., DNA or 

protein-conjugated particles) can facilitate a pattern-
based easy-readout multiplex immunoassay platform.

Additional file

Additional file 1. Additional information is available about schematics of 
generating Braille-inspired patterns.
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Fig. 3  1D linear pattern using two types of particles by repeating the “trapping-transfer-and-array” sequence. a Bright-field microscopic image of 
arrayed particles. Bare (indicated with black arrows) and red-fluorescent particles (indicated with red arrows) are deterministically trapped in an 
arraying device. b Fluorescent image revealing the linear pattern of the “dot-dash” line

Fig. 4  2D planar pattern using two types of particles. a Braille representation of numbers from 0 to 9. b Bright-field microscopic image of arrayed 
particles composed of the combination of bare and red-fluorescent particles. c Fluorescent image revealing the planar pattern that displays the 
Braille numbers 1, 2, 3, 4, and 5
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