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Optical MEMS devices for compact 3D 
surface imaging cameras
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Abstract 

Implementing 3D surface imaging camera systems into miniaturized devices for a variety of 3D applications such 
as movement recognition, object sensing, and 3D endoscopy has received great attention over the past decade. 
Recently, various MEMS techniques enabled the fabrication of key optical elements for 3D surface imaging with com‑
pact size, reasonable cost, and high yield. This article will overview the principles of major categories of 3D surface 
imaging techniques and their applications using optical MEMS devices for compact 3D surface imaging camera.
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Background
Imaging cameras in various fields has been used to cap-
ture three-dimensional (3D) objects in reality into two-
dimensional (2D) images without depth information with 
conventional image sensors. However, this deficiency of 
3D information limits the perception and intensifies the 
confusion for understanding the real world. For decades, 
numerous technical efforts have been made in research, 
development, and commercialization for 3D surface 
imaging technologies in many applications. Recently, 
as the miniaturization trend of electrical devices con-
tinues, technical demand for integration of 3D imaging 
techniques into miniaturized devices has significantly 
increased and led to the introduction of recent commer-
cially available devices for 3D surface imaging in portable 
devices [1], light detection and ranging (LiDAR) system 
[2], medical imaging scanners [3], and movement recog-
nition of video games [4]. However, existing technolo-
gies still suffer from minimizing the overall system size, 
require to achieve one of the modalities of 3D surface 
imaging techniques. Recently, MEMS fabrication tech-
nology enabled the compact packaging of various opti-
cal systems by minimizing the key optical components. 

This article will provide a mini-review for optical MEMS 
devices focused on compact 3D surface imaging applica-
tions, which cover the principle of the major 3D surface 
imaging techniques and their applications.

Conventional 3D surface imaging techniques
Numerous 3D surface imaging techniques have been 
developed using stereoscopic vision [5, 6], structured 
light [7–9], time-of-flight (ToF) [10], interferometry 
[11], holographic imaging [12], and so on. Stereoscopic 
vision, structured light and ToF are considered as three 
major techniques and actively investigated because they 
provide higher resolution, high speed, and intuitive appli-
cable principle compared to others. Figure  1 shows the 
schematic illustration of three representing techniques 
for 3D surface imaging and Table 1 describes the distinc-
tive aspects of those representatives. The stereoscopic 
vision method utilizes two or multiple image sensors 
and concurrently captures the same scene from differ-
ent viewpoints (Fig.  1a). After the rectification process 
of stereo images, depth information can be calculated 
by comparing the image pixel disparities of rectified ste-
reo images. The stereo vision method has difficulty in 
measuring non-textured smooth 3D surfaces because 
the method extracts 3D depth information by comparing 
pixel intensities between left and right images. In addi-
tion, the method shows weak 3D imaging performance in 
low light intensity circumstance because the stereo image 
comparing process requires high-contrast images with 
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appropriate intensities. However, the stereoscopic vision 
method has already been widely adopted in various 3D 
imaging commercialized products such as 3D movie 
recorder [19] and 3D medical endoscopes [20] with sig-
nificant advantages in low-cost, intuitive principle, and 
compact configuration. The structured light method 
utilizes a pattern projector, which can generate single 
or multiple light patterns with certain geometries such 
as dot arrays, speckle patterns, line arrays, or sinusoidal 
fringe patterns, and detects the distortions of illuminated 
patterns from the image captured by the single image sen-
sor (Fig.  1b). Structured light method has been actively 
developed for real-time 3D scanning system using spa-
tial light modulator (SLM), such as a digital micro-mir-
ror device (DMD) or rotating patterned apertures, for 
high-speed and temporal-varying programmable pattern 

generation [21–24]. The ToF method utilizes the transit 
time of the reflected light pulse from the target object. 
The illuminator unit emits a light pulse onto the tar-
get surface with a combination of scanning devices, or 
beam expander to cover bi-dimensional scenes of 3D 
objects. The reflected light pulse from the target surface 
is received and calculated to reconstruct the depth infor-
mation from light travel time and its intensity (Fig.  1c). 
The ToF methods are suitable for capturing the objects 
at short to long ranged distances and require high speed 
circuitry because the temporal resolution should be in 
the pico-second range for appropriate 3D imaging reso-
lution. As a result, 3D surface imaging of ToF method is 
often applied in long-range applications such as military 
scanning [25] or LiDAR system for autonomous driving 
[26].

Fig. 1 Schematic illustration of three representing techniques for 3D surface imaging and their principles; a stereoscopic imaging, b structured 
light, and c time‑of‑flight (ToF)

Table 1 Distinctive aspects of three representing techniques for 3D surface imaging [13–18]

Stereoscopic vision Structured light ToF (time-of-flight)

Principle Compare disparities of stereo images 
from two 2D sensors

Detect distortions of illuminated pat‑
terns by 3D surface

Measure the transit time of reflected light 
from the target object

Depth accuracy mm to cm (difficulty with smooth and 
non‑textured surface)

μm to mm (depends on the pattern 
density)

mm to cm (depends on resolution of ToF 
sensor)

Image resolution High (camera dependent) High (camera dependent) Low/medium (ToF sensor size depend‑
ent)

Scanning speed Medium (limited by software complex‑
ity)

Medium/Fast (limited by SW complex‑
ity and camera speed)

Fast (limited by sensor speed)

Low light performance Weak Good Good

Bright light performance Good Weak/medium (depends on illumina‑
tion power)

Medium

Distance range Mid range (depends on the distance 
between two cameras)

Very short to mid range (depends on 
illumination power)

Short to long range (depends on laser 
power and modulation)

Software complexity High Low/middle/high (depends on pattern 
density and variability)

Low

Material cost Low Middle/high Middle
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Optical MEMS devices for compact 3D surface 
imaging
Recently, market demand for miniaturized 3D optical 
imaging modules has been remarkably increased since 
smart devices, wearable devices, or multifunctional imag-
ing devices has attracted both customer and developer’s 
interest. However, regardless of the high technological 
maturity of 3D surface imaging techniques mentioned 
above, miniaturized optical key elements for 3D surface 
imaging is required to be packaged into compact imaging 
systems, such as multifunctional cameras in smartphones 
and 3D endoscopic catheter. In this section, previous 
works on optical MEMS devices for compact 3D surface 
imaging system, which are the stereoscopic vision, struc-
tured light, and ToF will be introduced. Recent researches 

on MEMS-enabled 3D stereoscopic imaging systems 
were focused on using a single image sensor rather 
than two identical cameras to reduce the overall size of 
the optical systems [27–30]. Hexagonal arrays of liquid 
crystal (LC) lens device operated by the applied voltage 
enabled the focus-tunable 3D endoscopic system using a 
single image sensor [27]. The upper patterned 7 hole-like 
ITO electrodes enabled smooth parabolic-like gradient 
electric field distribution to manage the phase profiles in 
each LC lens. The hexagonal array of LC lens could cap-
ture the object images with the different viewpoint on a 
single image sensor, which were used to reconstruct 3D 
images (Fig.  2a). Moreover, they reported 2D/3D tun-
able endoscopy imaging system using dual layer electrode 
LC lens [28]. The multi-functional LC lens (MFLC-lens) 

Fig. 2 Single image sensor based optical systems for 3D stereoscopic imaging; a hexagonal LC lens arrays for 3D endoscopy and 3D reconstruction 
result [27]. b Dual layer electrode LC lens arrays for 2D/3D tunable endoscopy and their 2D/3D mode imaging results [28]. c Electrothermal MEMS 
parallel plate rotation device and anaglyph image, calculated disparity map of the slanted object with textures [29]. d Microprism arrays based 
stereo endoscopic camera and stereoscopic imaging result [30]
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based endoscope was 2D/3D switchable as well as 
focus-tunable in both modes by controlling the volt-
age (Fig.  2b). Another single-imager based stereoscopic 
camera utilized parallel plate-rotating MEMS device by 
changing the beam path through the transparent paral-
lel plate [29]. They fabricated electrothermal bimorph 
actuator and an anti-reflective optical plate was directly 
placed above the microstructure to generate the binocu-
lar disparities between subsequent images in a temporal 
division by changing the parallel plate rotation angle up 
to 37° in front of an endoscopic camera module, which 
was comparable to 100  μm baseline distance binocular 
cameras (Fig.  2c). In addition, they successfully demon-
strated the anaglyph image and calculated disparity maps 
for 3D imaging by capturing two optical images at the 
relative positions. Another MEMS-enabled stereoscopic 
imaging system was microprism arrays (MPA) based ste-
reo endoscopic camera [30]. The MPA with 24° of apex 
angle and symmetric arrangement, which was microfab-
ricated by using conventional photolithography, thermal 
reflow, and polydimethylsiloxane (PDMS) replication, 
splits light rays from an object into two stereo images 
when placed in front of a single camera module (Fig. 2d). 
Measured distances of the object were calculated and 
compared with the actual distance by comparing the two 
stereo images from refraction of symmetric MPA.

The structured light method with the digital micro-
mirror device (DMD), which can selectively reflect the 
incoming light ray and generates structured light pat-
terns, enabled various 3D imaging researches with high-
speed performances. However, the overall size of the 
DMD system is considerably large to be assembled in 

various miniaturized optical devices, so that the recent 
researches on structured light generation for 3D surface 
imaging utilized optical MEMS devices for compact con-
figuration. Previous works on 3D surface imaging using 
structured light with optical MEMS devices mainly 
divide into the utilization of actuating reflective MEMS 
mirror [31–34] and diffraction generation from laser 
transmission through grating micro-/nanostructures 
[35–38]. Liquid immersed MEMS mirror was demon-
strated to enlarge the scanning FOV for 3D surface imag-
ing from 90° to 150° by “Snell’s window” effect (Fig.  3a) 
[31]. Fabricated 1D scanning MEMS mirror generates a 
structured light pattern by a combination with a cylindri-
cal lens to convert the laser spot into a laser line stripe. 
In addition, they reconstructed depth map by illuminat-
ing structured light from the designed projector toward 
the objects positioned at 64° to 128°. The projector mod-
ule can only capture the stationary scenes because the 
liquid immersed MEMS actuator caused heat transfer 
inside the liquid and turbulence when operated with high 
speed. In addition, line array projector module by com-
bining a single-axis torsional MEMS mirror with a dif-
fractive microstructure was demonstrated (Fig.  1b) [32, 
33]. The deformation of the projected line array pattern, 
which was generated with the scanning of the diffrac-
tive dot array patterns in 25-kHz frequency, was cap-
tured by the CMOS camera, was calculated to estimate 
the depth profile of the object, and found in accordance 
with the geometrical size of the target object. Besides, 
variable structured illumination projector using a 
laser-modulated 2D Lissajous scanning MEMS mirror 
were reported (Fig.  1c) [34]. The pattern density of the 

Fig. 3 Structured light pattern generation system by scanning the MEMS mirror for 3D surface imaging; a wide‑angle structured light generation 
with 1D MEMS mirror immersed in liquid and its 3D imaging results with the pattern generation FOV over 90° [31]. b Line array projector consisted 
of a 1D scanning MEMS mirror and a diffractive microstructure and the estimation of the depth profile of the object by calculating the line 
deformation [32, 33]. c Variable structured illumination using Lissajous scanning MEMS mirror and optical patterns from the projector module with 
different GCD and phase [34]
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projected structured light pattern was controlled by the 
modulation of a laser beam at the least common multiple 
of the scanning frequencies, while the MEMS mirror was 
scanned at a frequency with the greatest common divisor 
(GCD) greater than 1. The variable structured illumina-
tion was performed by changing GCD of scanning fre-
quencies and the phase of operating signals.

Another researches using transmitting diffraction grat-
ing for structured light pattern generation have also been 
conducted because of their compact optical configura-
tions without MEMS mirror and its actuating circuit. A 
binocular 3D imaging system utilized the conventional 
stereoscopic camera with the 64 × 64 Dammann grat-
ing for laser spot array generation [35, 36]. Dammann 
array projector using laser diode (LD), collimating 
lens, Dammann grating, and objective lens with sim-
ple configuration, was placed between binocular cam-
eras to provide laser spot arrays for stereo matching of 
two cameras (Fig.  3a). The overall system was less than 
14  cm and weighs less than 170  g. Another structured 
light projector could generate dot array patterns by com-
bining a designed transmission diffractive optical ele-
ment (DOE) with two types of light sources: the edge 
emitting laser (EEL) and the patterned vertical cavity 
semiconductor emission laser (VCSEL) array (Fig.  4b) 
[37]. E-beam lithography and nano-imprint lithogra-
phy enabled the fabrication of the designed DOE with 

the Gerchberg–Saxton algorithm to generate the phase 
distribution. The fabricated DOE, placed in front of the 
collimated light source with EEL or patterned VCSEL 
arrays, produced irregular random or regular structured 
light patterns, respectively. Another structured light pro-
jector using multifunctional binary DOE could gener-
ate line pattern arrays with high contrast and uniformity 
[38]. Multiple-stripe patterns were generated with high 
diffraction efficiency by designing the binary surface 
relief, which combines functions of a diffractive lens, 
Gaussian-to-tophat beam shaper, and Dammann grating 
(Fig.  4c). The designed multifunctional DOE, fabricated 
by E-beam lithography, showed diffraction efficiencies up 
to 88% with 20° fanout angles.

MEMS fabrication techniques also enabled the minia-
turized and low-cost ToF based 3D imaging systems [39–
41]. A LIDAR system with an optical 256 × 64-pixel ToF 
sensor and MEMS laser scanning device was introduced 
[39]. Emitted pulsed signals from three LDs traveled 
through the collimating lenses and reflected by the two-
axis MEMS scanner toward the target scenes with FOV 
divided into three scanning regions (Fig.  5a). Reflected 
pulsed light from the target objects were then received 
by designed single-photon image CMOS sensor with 
256 × 64 pixels to calculate the depth profile. The authors 
could precisely measure the distance up to 20  m with 
maximum error of 13.5  cm. Another MEMS-enabled 

Fig. 4 Structured light system by diffraction generation from laser transmission through grating structures; a binocular 3D imaging system using a 
structured light projector with a Dammann grating and captured diffraction patterns by a designed Dammann grating (inset) [35, 36]. b Structured 
light projector with a DOE designed by the Gerchberg–Saxton algorithm and patterned VCSEL arrays. Their projected dot array pattern is shown at 
the bottom line with fabricated DOE (inset) [37]. c Multifunctional binary DOE in combination with diffractive lens, Gaussian‑to‑tophat beam shaper, 
and Dammann grating. Their projected tophat line array pattern is shown at the bottom line with fabricated DOE (inset) [38]
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ToF researches using micromachined electro-absorptive 
optical modulator was reported [18, 40, 41]. The optical 
modulator was designed as a multi-layer stacked struc-
ture of diffractive mirrors and electro-absorptive layers, 
to maximize the magnitude of optical modulation. The 
fabricated device modulates the IR image reflected from 
the target object to extract the phase delay of the trave-
led IR light. The transmittance difference generated by 
applying the voltages to the device was 51.8%, which was 
sufficiently large amount of IR light modulation to obtain 
enough IR intensity and good signal-to-noise ratio. After 
characterization, optical modulator was placed between 
the beam splitter and CMOS image sensors to identify 
the phase delay of incoming IR lights of each pixel for 
depth calculation and RGB image matching (Fig. 5b).

Conclusion
We have overviewed optical MEMS devices for 3D sur-
face imaging applications, depending on the utilized 
3D imaging techniques; stereoscopic vision, struc-
tured light, and time-of-flight. Table 2 shows the sum-
mary of optical MEMS devices for 3D surface imaging 
camera systems. MEMS techniques enabled a single 

image sensor based 3D stereoscopic imaging by intro-
ducing novel micro-optical devices rather than using 
two identical camera modules of conventional stereo-
scopic apparatus, which can lead to the reduction of 
the overall system with relatively simple configurations. 
MEMS-enabled structured light based 3D imaging was 
achieved by introducing the scanning MEMS mirror 
with additional modulation or diffraction generation 
from laser transmission through micro grating struc-
tures. MEMS-based structured laser pattern generating 
devices are suitable for compact optical systems for 3D 
surface imaging. The number of MEMS-enabled ToF 
imaging researches were insufficient compared to ste-
reoscopic vision or structured light, since the fabrica-
tion of devices is limited by the high-cost and complex 
procedures for high-speed performances. However, 
miniaturized ToF sensors using MEMS techniques are 
more suitable in long-range distance measuring appli-
cations, such as LiDAR, compared to other 3D imaging 
techniques. The proper optimization and utilization of 
compact MEMS-based 3D surface imaging systems will 
lead to more effective 3D imaging and distance measur-
ing applications.

Fig. 5 ToF based 3D surface imaging systems; a 254 × 64‑pixel single photon CMOS sensor with two‑axis scanning MEMS mirror and their 
measured depth image of 3D scene [39]. b Micromachined electro‑absorptive optical modulator for ToF based 3D imaging and the depth map of 
3D objects acquired using the ToF system [18, 40, 41]
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