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Abstract 

Originally introduced by H. A. Pohl in 1951, dielectrophoretic (DEP) force has been used as a striking tool for biologi-
cal particle manipulation (or separation) for the last few decades. In particular, dielectrophoresis activated cell sorters 
(DACSes) have been developed for applications in various biomedical fields. These applications include cell replace-
ment therapy, drug screening and medical diagnostics. Since a DACS does not require a specific bio-marker, it is able 
to function as a biological particle sorting tool with numerous configurations for various cells [e.g. red blood cells 
(RBCs), white blood cells (WBCs), circulating tumor cells, leukemia cells, breast cancer cells, bacterial cells, yeast cells 
and sperm cells]. This article explores current DACS capabilities worldwide, and it also looks at recent developments 
intended to overcome particular limitations. First, the basic theories are reviewed. Then, representative DACSes based 
on DEP trapping, traveling wave DEP systems, DEP field-flow fractionation and DEP barriers are introduced, and the 
strong and weak points of each DACS are discussed. Finally, for the purposes of commercialization, prerequisites 
regarding throughput, efficiency and recovery rates are discussed in detail through comparisons with commercial cell 
sorters (e.g. fluorescent activated and magnetic activated cell sorters).
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Background
Since dielectrophoresis was first reported by H. A. Pohl 
in 1951, it has been employed as a biological particle 
manipulating tool in various fields (e.g. cell replacement 
therapy, drug screening, medical diagnostics, particle 
filtration and microfluidics) [1–10]. Dielectrophoretic 
(DEP) phenomena occur when micro/nano-particles in 
a medium are exposed to a non-uniform electric field, 
causing polarization for particular particles according 
to their dielectric property [11, 12]. DEP force is clas-
sified into two types according to correlations of the 
dielectric properties of the particles and medium. Posi-
tive DEP (p-DEP) force pulls particles toward a higher 
electric gradient, and negative DEP (n-DEP) force 

repels particles away from the higher electric gradient. 
Therefore, various target cells with different dielec-
tric properties can be manipulated by controlling the 
medium properties or the input voltage condition. In 
order to manipulate biological particles, consequently, 
various dielectrophoresis-based techniques, including 
DEP trapping, DEP field-flow fractionation (DEP-FFF), 
traveling wave DEP (TwDEP) force and DEP barrier, are 
performed within a micro fluid channel [13–21]. DEP 
trapping techniques are mainly used to isolate particles 
within a still fluid utilizing p-DEP force [22–25]. The 
TwDEP force, DEP-FFF and DEP barrier techniques are 
realized via angled or vertical electrode pairs, and they 
are generally implemented with n-DEP force within the 
micro channel with fluidic flow [26–32]. The latter tech-
niques have a striking advantage in terms of throughput 
since the continuous loading of target cells along the 
fluidic flow allows for continuous cell separation. There-
fore, there have been many studies on the separation of 

Open Access

*Correspondence:  bkim@kau.ac.kr 
School of Aerospace and Mechanical Engineering, Korea Aerospace 
University, 76 Hanggongdaehak‑ro, Deogyang‑gu, Goyang‑Si, 
Gyeonggi‑do 10540, Republic of Korea

http://creativecommons.org/licenses/by/4.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s40486-016-0028-4&domain=pdf


Page 2 of 10Lee et al. Micro and Nano Syst Lett  (2016) 4:2 

various biological particles, including blood cells [red 
blood cells (RBCs) and white blood cells (WBCs)], can-
cer cells [circulating tumor cells (CTCs), leukemia cells 
and breast cancer cells], submicron particles (bacteria, 
yeast cells), spermatozoa, stem cells, protein and DNA. 
Dielectrophoresis activated cell sorters (DACSes) dif-
fer from conventional fluorescent activated cell sorters 
(FACSes) and magnetic activated cell sorters (MACSes) 
in that they do not require the additional financial and 
time expenditure necessary for immune-labeling [33–
38]. In addition, DACSes achieve high separation effi-
ciency owing to the continuous separation in the micro 
fluid channel. Nevertheless, there are still big hurdles to 
be overcome with respect to their low throughputs and 
recovery rates.

In this article, therefore, we explore current DACS 
capabilities worldwide and look at recent developments 
intended to overcome particular limitations. First, the 
basic theories are reviewed. Then, the configurations and 
characteristics of four representative DACSes are com-
pared, and the strong and weak points of each DACS 
are discussed. Finally, a commercialization strategy is 
suggested.

Theory
Dielectrophoresis is a phenomenon that occurs in a 
non-uniform electric field as a result of polarization, as 
shown in Fig. 1. DEP force is generated by the interaction 
between the induced dipoles and a non-uniform electric 
field [11, 12]. The magnitude and direction of the DEP 
force is determined by the intrinsic dielectric proper-
ties of the particles and the medium. As mentioned, the 
characteristics of DEP force differ from those of other 
cell sorters that require an antibody antigen reaction. The 
magnitude and direction of the DEP force is expressed 
with the below equation [11, 12, 39]. 

where r indicates the radius of the target particle, εm 
and ε0 are the permittivity of the medium and the vac-
uum state, the term Re[fCM] indicates the real parts of 
fCM. fCM is the Clausius–Mossotti (CM) factor, and Erms 
is the root-mean-square of the electric field. Researchers 
transform Eq. 1 as necessary to various forms according 
to technique. For example, in the case of TwDEP force 
(Fig. 1c), the magnitude of the acting force on a particle 
can be expressed as [16, 17].

(1)FDEP = 2πr3εmε0Re[fCM]∇|Erms|2

Fig. 1  Schematic diagram of dielectrophoresis. a a particle in a non-uniform electric field experiencing positive DEP force and negative DEP force, 
b a particle experiencing DEP trapping, c a particle in an electric field with a phase gradient (traveling wave dielectrophoresis), d target and non-
target particles experiencing DEP-FFF, e a particle experiencing DEP barrier
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where the term Im[fCM] indicates the imaginary part, 
w is the width of the electrode, and g is the spacing 
between each electrode. Also, the force of the DEP bar-
rier (Fig. 1e), which is generated between top and bottom 
electrodes, can be approximated as [19, 40].

where U is the applied root-mean-square voltage, and a 
is the channel height, which is the same as the spacing 
between the top and bottom electrode pair.

The direction of DEP force depends on the sign of the 
CM factor in Eq. 1, and it is defined as.

where ε∗p and ε∗m denote the complex permittivity of 
the particle and the medium, j is the imaginary vector 
(j =

√
−1), σi is the conductivity of i, and ω is the angu-

lar frequency (ω = 2πf) of the applied AC electric field. 
In the case of Re[fCM] > 0, particles in a non-uniform AC 
electric field move toward the higher electric field, and 
this is called p-DEP force. The blue arrow in Fig. 1a indi-
cates its direction. In the case of Re[fCM] < 0, particles in 
an electric field are repelled from the higher electric field, 
and this is called n-DEP force. The red arrow in Fig. 1a 
indicates its direction. Hence, the input frequency is an 
important factor. In particular, the condition in which the 
frequency at the CM factor is zero is called cross-over 
frequency. This is expressed as [41, 42].

where σm is the medium conductivity, and Cmem is the 
capacitance per unit area of the cell plasma membrane. In 
other words, when an application employs n-DEP force, 
the input frequency should be selected properly to ensure 
that Re[fCM]  <  0. Consequently, DEP force-based cell 
manipulating tools in the microfluidics can be designed 
based on the above equations.

DEP trapping
Dielectrophoretic trapping is an application suitable 
for dealing with submicron particles such as bacteria 
and viruses. Its concept is shown in Fig. 1b. In order to 
separate submicron particles, DEP trapping generally 
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harnesses p-DEP force in a still fluid. Suehiro et al. [13] 
implemented a DEP impedance measurement (DEPIM) 
employing p-DEP to trap suspended biological cells [e.g. 
Escherichia coli (E. coli) and Serratia marcescens (Ser-
ratia)]. They trapped target cells within a still fluid and 
washed the non-target cells after agglutinating the target 
cells by antigen–antibody reaction. Also, they employed 
interdigitated patterned electrode arrays and trapped tar-
get cells spaced between electrodes deposited in paral-
lel. Lapizco-Encinas et al. [43] presented insulator-based 
(electrodeless) dielectrophoresis (iDEP) to separate live 
and dead E. coli. In their paper, p-DEP and n-DEP force 
were selective1y utilized. Since dead cells show much 
lower DEP mobility than live cells, dielectrophoresis is a 
more appropriate technique than those using other elec-
trokinetic phenomena. Their DACS was designed to have 
numerous micron-sized posts, as shown in Fig.  2 (i.e. 
extruded electrodes). Although DEP trapping is a use-
ful tool to differentiate target particles, it has limitations. 
Rather than separating biological particles continuously, 
DEP tapping is a one-shot method. In addition, DEP 
trapping requires flushing to collect trapped target cells 
(or wash un-trapped non-target cells). These limitations 
cause low throughput and recovery rates in DEP tapping-
based DACSes. In order to overcome these limitations, 
transporting techniques (TwDEP force) and particle sort-
ing in a continuous flow (e.g. DEP-FFF) have been pro-
posed [16, 44–46].

Traveling wave dielectrophoresis
Unlike other DACS techniques, traveling wave dielec-
trophoresis utilizes an AC electric field with a phase 
gradient. It is suitable for separating micron-sized par-
ticles such as blood cells. The phase shifts induce parti-
cle transportation along or against the direction of the 
travelling wave. For cell separation, it is a more adequate 
method than DEP trapping because the phase shifts ena-
ble particle motion even in a still fluid. Morgan et al. [16] 
introduced TwDEP force-based cell sorting by employing 
a multilayered electrode on a large area to achieve high 
throughput. Although they separated the components of 
whole blood, the large area of the configuration caused 
a resistance increase at the microelectrode. Therefore, 
Choi et al. proposed a unique multilayered bus bar design 
to deliver an improved TwDEP force-based DACS, as 
shown in Fig.  3. They exploited a quadrature phase (0°, 
90°, 180° and 270°) with four microelectrode tracks. In 
addition, in order to implement size-based particle sort-
ing, a microelectrode track was designed with gradually 
increasing gaps from 10 to 40  μm. Consequently, they 
demonstrated separation feasibility by fractionating four 
different diametric latex particles (i.e. 3, 6, 10 and 20 μm) 
successfully. In order to break through the limitations 
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of conventional DACSes, Cheng et  al. [47] proposed a 
transformed cell sorting device employing two different 
electrode arrays that generated TwDEP force, as shown 
in Fig. 4. They achieved an approximate fourfold velocity 
increase by using a focusing mechanism that employed 
TwDEP force within a continuous flow. Conclusively, 
they showed that a TwDEP system could achieve a 
higher throughput than DEP trapping. However, since it 
required complicated electrode structures, they had dif-
ficulty in improving the recovery rate and reproducibility. 

DEP field flow fractionation
The working principle of the DEP field-flow fractiona-
tion is shown in Fig.  1d. DEP-FFF is an outstanding 
technique because it was originally proposed to sepa-
rate biological particles within a continuous fluidic flow. 
In other words, a DACS that harnesses DEP-FFF is able 
to perform continuous cell separation with the unceas-
ing injection of target particles. Particle movement in 
the microchannel depends on three acting forces—DEP 
force, hydrodynamic force, and gravity. Particles passing 

through the main channel can experience sedimenta-
tion and levitation due to the gravity and n-DEP force, 
respectively. When the DEP force is stronger than grav-
ity, the particles levitate diagonally rather than verti-
cally due to the hydrodynamic force of the fluidic flow. 
Since DEP force depends on dielectric properties and 
the radius of the particles, multiple particle types with 
different sizes or dielectric properties can be fraction-
ated. A detailed analysis concerning the acting force for 
different particles with DEP-FFF was implemented by 
Gascoyne et  al.  and Wang et  al. [8, 48]. Lewpiriyawong 
et al. [49] fabricated a PDMS-based micro-device utiliz-
ing DEP-FFF, and they demonstrated simulation studies. 
They selected an AgPDMS composite as their electrode 
material. In order to select the proper input voltage, 
they implemented a separation test under various volt-
age conditions (0, 25, 50 and 55  V) with latex polysty-
rene microspheres (5, 10 and 15 μm), as shown in Fig. 5. 
Since the AgPDMS caused voltage drops, they were able 
to select a higher voltage than in the simulation analy-
sis. Consequently, they demonstrated size-dependent 

Fig. 2  DEP trapping configuration by Lapizco-Encinas et al. [43]. a Top view of the DACS, b the electric lines being squeezed between the insulat-
ing posts

Fig. 3  The proposed electrode with three layers by Choi et al. [17]. a Schematic view of the high-throughput gradient TwDEP device, b three layers 
of the TwDEP device
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particle sorting within a continuous microfluidic flow. 
Piacentini et  al. [50] performed the size-based separa-
tion of platelets from red blood cells, as shown in Fig. 6. 

In the same manner as that used by Lewpiriyawong et al. 
48 they investigated the trajectory in the microchannel 
through a numerical simulation. Their device employed 

Fig. 4  Schematic diagram of TwDEP force-based cell sorter by Cheng et al. [47]. a Top view of electrode arrangement, b side view of electrode 
structure, c images of TwDEP focusing electrodes, TwDEP sorting electrodes and packaged chip

Fig. 5  Video clip of particle levitation according to input voltage (10 μm particle at a 0 V, b 25 V, c 55 V, and 15 μm particle at d 0 V, e 25 V and f 50 
V) by Lewpiriyawong et al. [49]
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a “liquid electrode” defined by Demierre et al. [46] which 
is a kind of planar electrode deposited at the bottom 
of the empty zone positioned vertically from the main 

channel. They achieved striking results, with a recovery 
rate of over 98 %. On the other hand, Gupta et al. devel-
oped a device named ApoStream® to separate circulating 
tumor cells (CTCs) from normal and healthy blood cells 
in a microfluidic flow [47, 51]. They not only separated 
various CTCs (e.g. SKOV3 and MDA-MB-231), but also 
confirmed the viability of the completely separated cells. 
As a result, the viability of the cancer cells fractionated 
by Apostream® (see Fig. 7) was greater than 97.1 %, and 
the throughput was reported as 5000 cells/s. Also, Apos-
tream® has come close to being commercialized, and the 
device has been utilized in research fields. Recent news 
regarding its commercialization is continually being 
reported on their website (ApoCell).  

DEP barrier
Another way to exploit a continuous flow is to gener-
ate a dielectrophoretic barrier to hinder cell movement 
at the main channel. Generally, top–bottom patterned 
electrodes are deposited to generate n-DEP force and 

Fig. 6  Trajectory of RBCs and PLTs in the device and graphical 
representation of trajectory between simulation and experiment by 
Piacentini et al. [50]

Fig. 7  Schematic diagram of the Apostream® by Gupta et al. [44]
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consequently deflect target particles toward a target 
area. When the DEP force between the top and bottom 
electrodes (electrode pair) is sufficient, the angled elec-
trode pair enables the deflection of the target particles 
along the electrode pair. DACSes harnessing DEP bar-
rier always install repeated electrode pairs to guarantee 
high separation efficiency. This technique is convenient 
since it does not forcibly translocate but just switches 
the direction of the particles in the channel, though not 
against the fluidic flow. In addition, the DEP barrier 
technique has advantages in terms of size-based target 
particle selection because changes in the channel depth 
(distance between top and bottom electrodes) can con-
trol the magnitude of the DEP barrier under the same 
input conditions (input voltage and frequency), as shown 
in Eq.  3. Durr et  al. [19] introduced a DACS that har-
nessed DEP barrier, as shown in Fig.  8. They reported 
an electrode pair as a 3-D deflector array. They analyzed 
the threshold velocity for particle size according to volt-
age variation, as well as an electric field in a numerical 
simulation. As shown in Fig. 9, Kim et al. [52] presented 
a multi-target DACS (MT-DACS), and they separated 
multiple biological particles (MC1061 strain of E. coli) 
harnessing the same mechanism. They confirmed their 
separation results using flow cytometry. Since three 
kinds of particles were selected as target cells, three 
outlets and two kinds of angled electrode groups with 

different angles were fabricated. Compared to single pass 
DACSes, they achieved a 1000-fold overall enrichment 
of the separated target cells. In addition, they found that 
there was no detectable cross-contamination near the 
outlet channels. Kim et al. [53] proposed a novel DACS 
with a vertically arrayed micro channel to harness gravity 
with cantilever type electrode arrays. Since the proposed 
DACS harnessed gravity to shunt the injected cells, they 
did not require an additional flow generator such as 
micro syringe pump (or other micro-device), which is 
utilized by almost DACSes. Also, for high throughput, 
which is a weak point in current DACSes, they designed 
a meso-sized channel (L × W×H = 2 mm × 0.5 mm × 2
5  mm) that differed from conventional micro-devices. 
They injected a mixture including three kinds of parti-
cles (10, 25 and 50  μm), and they investigated the sedi-
mentation patterns of each colony. Consequently, they 
achieved a high separation efficiency of 94.7  %. Lee 
et  al. [54] designed a simplified DACS to obtain high 
reliability. Their DACS consisted of a meso-sized chan-
nel (15  mm ×  40  mm ×  0.2  mm) encompassed by two 
plates that were as a patterned top–bottom electrode to 
generate DEP barrier as shown in Fig. 10. In the case of 
conventional DACSes, the large number of components 
complicates the assembly procedure. Hence they insisted 
that complex structures could cause a leaking phenom-
enon between components and reduce reproducibility 
and reliability. They determined the proper input condi-
tion based on a numerical simulation and demonstrated 
a separation test with K562 cells (cancer cells found in 
bone marrow). In the experiments, the DACS achieved a 
separation efficiency of 94.74 %, a throughput of 17,000 
cells/min and a recovery rate of 49.42 %.

Comparative analysis with a commercial cell sorter
FACSes and MACSes are representative commercial 
cell sorters. FACSes show high separation efficiencies 
of over 97  %, throughputs of 10,000 cells/s and recov-
ery rates of over 55  % [55–57]. MACSes show similar 
performance characteristics—separation efficiencies of 
over 90 %, throughputs of 1010 cells/h and recovery rates 
near 50 % [58–60]. The results do not include the time-
consuming labeling process that takes over an hour. The 
aforementioned DACS employing DEP-FFF and DEP 
barrier immediately achieved competitive results when 
compared to FACSes and MACSes in terms of separa-
tion efficiency. However, the throughput and recovery 
rate are still not at commercial levels. Even though Hu 
et al. [40] reported a striking throughput employing die-
lectrophoresis at over 10,000 cells/s, similar to that of a 
FACS, their sorter required a specific marker and a labe-
ling process as prerequisites, which are also required for 
FACSes and MACSes. Consequently, it can be said that a 

Fig. 8  Schematic diagram of DACS harnessing DEP barrier by Durr 
et al. [19]
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DACS without immune-labelling cannot produce the lev-
els of performance in terms of efficiency, throughput and 
recovery rate when compared to FACSes and MACSes. 
Nevertheless, a DACS employing the intrinsic dielectric 

material properties of a particle obtained a high separa-
tion efficiency and high recovery rate without the labe-
ling process. Once a high throughput can be achieved 
through an optimization process (e.g. employing a 
modular system consisting of a few of the same features 
as those used by MACSes, applying a higher flow rate 
and so on), DACSes will be sufficiently competitive with 
FACSes and MACSes.

Conclusion and prospects
In this review article, DEP theory and various trans-
formed equations broadly used in DACSes were intro-
duced. Particle sorting techniques were classified into 
four types—DEP trapping, DEP field-flow fractionation 
(DEP-FFF), traveling wave dielectrophoresis and DEP 
barrier. According to target particles and objects, it was 
shown that the appropriate technique must be selected. 
Even though DEP trapping techniques are outstand-
ing with respect to isolating submicron particles such as 
viruses and bacteria, they still have limitations in separat-
ing micro particles when compared to other techniques. 
This is because DEP trapping techniques are gener-
ally performed within a still fluid, and this prohibits the 
increase of throughput. Throughput is a very important 
factor for commercialization. Although research has 
stressed high efficiency, throughput and recovery rate 
have not been dealt with in depth because almost all 
DACSes have failed to obtain throughputs and recovery 
rates that have already been achieved by commercial-
ized tools such as FACSes and MACSes. In order to meet 
the prerequisites for commercialization, exceedingly 
high separation efficiencies, throughputs and recovery 
rates must be achieved. Considering commercialization, 

Fig. 9  Experimental setup a and optically captured images b at the crossroads by Kim et al. [52]

Fig. 10  Simplified DACS configuration and video clip of separation 
process by Lee et al. [54]. a Deflected K562 cells above the DEP bar-
rier, b K562 cells sinks beyond boundary line
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therefore, DACS techniques within a continuous flow 
(DACSes based on TwDEP force, DEP-FFF and DEP 
barrier) have been widely studied to achieve the desired 
throughputs and recovery rates. However, success has 
not yet been achieved since the DACSes reported thus 
far have not only used micro-sized channels with low 
flow rates, but also complicated configurations. There-
fore, the channel and the flow rate should be maximized 
for high throughput. In addition separation device con-
figurations need to be simplified to enable high recov-
ery rates. Furthermore, innovative electrode shapes and 
channel configurations must be implemented to obtain 
the high separation efficiencies. When high separation 
efficiencies, throughputs and recovery rates are guar-
anteed, DACSes will be able to open a new era in the 
fields listed below since they will not require immune-
labelling related pre- and post-processes before and after 
separation.

• • Tissue engineering to rebuild damaged organs.
• • Stem cell separation for cell replacement treatment.
• • In vitro fertilization or intracytoplasmic sperm injec-

tion; superior sperm selection.
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