Skip to main content

Table 1 Comparison of the current ethanol-sensing performance with those of previously reported TiO2-based sensors

From: Ethanol-sensing properties of cobalt porphyrin-functionalized titanium dioxide nanoparticles as chemiresistive materials that are integrated into a low power microheater

Sensing material Concentration Response def. Response Operating
temperature
Power consumption Limit of detection Ref.
Ag@TiO2 nanoparticles 5 ppm Ra/Rg 4.35 RT 0.15 ppm [2]
Surface-coarsened Ag-TiO2 nanobelts 500 ppm Ra/Rg 46.153 200 °C N/A* 5 ppm [10]
TiO2 thin film 100 ppm (Ig−Ia)/I0 ~ 10 400 °C N/A* 100 ppm [11]
TiO2 nanoparticle 100 ppm Ig/Ia ~ 11.5 350 °C N/A* 20 ppm [12]
Nb-/Cu-doped
TiO2 nanoparticle
100 ppm Ra/Rg ~ 3 400 °C N/A* 25 ppm [13]
TiO2
3D hierarchical nanostructure
100 ppm Ra/Rg 6.4 350 °C N/A* 20 ppm [14]
TiO2 nanotube 1000 ppm (Ig−Ia)/Ia 13,800 250 °C N/A* 50 ppm [15]
Nb-doped
TiO2 nanorods
400 ppm Ra/Rg ~ 16 500 °C N/A* 50 ppm [16]
TiO2 nanotube 400 ppm Rg/Ra ~ 0.7 RT 400 ppm [17]
TiO2 nanotube 50 ppm Ra/Rg ~ 10 450 °C 26 mW 50 ppm [18]
TiO2 nanoparticle
thin film
50 ppm (Ra−Rg)/
Rg×100
535% RT 10 ppm [19]
TiO2/V2O5 branched nanoheterostructures 100 ppm Ra/Rg 24.6 350 °C N/A* 20 ppm [20]
3D hierarchical flower-like TiO2 microstructures 100 ppm Ra/Rg 2.25 RT 10 ppm [21]
Anatase@rutile core@shell TiO2 nanosheets 500 ppm Ra/Rg 43.9 270 °C N/A* 50 ppm [22]
Carbon-doped
TiO2 nanoparticle
1 ppm (Ra−Rg)/
Ra*100
34% 150 °C N/A* 1 ppm [23]
Ag-loaded
TiO2 nanorod
0.6 ppm (Ig-Ia)/Ia 4.65 200 °C N/A* 0.6 ppm [24]
MoS2/TiO2
composite
500 ppm (Ra−Rg)/
Ra×100
100% 300 °C N/A* 1 ppm [25]
CoPP-functionalized TiO2 nanoparticles 10 ppm R a /R g 12.68 308.6 °C 18 mW 1 ppm This work
  1. N/A: not available, RT: room temperature
  2. *An external heater, a furnace, or meso-scale heater were used and the exact power consumption of heating element was not specified