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Abstract 

The stable recovery of gas sensors is an important indicator for evaluating their performance. Hitherto, the use 
of external light sources and/or an increase in the operating temperature has been effective in improving the recov-
ery rate of gas sensors. Herein, heterojunctions were formed between the two-dimensional transition metal dichalco-
genide nanosheets and zero-dimensional ZnO nanoparticles to improve the recovery rate of a  NO2 sensor. Scanning 
electron microscopy and Raman spectroscopy suggested a successful deposition of ZnO nanoparticles onto the  MoS2 
and  WSe2 nanosheets. The sensing response to 10 ppm  NO2 gas at 100 °C indicated that the heterojunction formed 
by ZnO and  MoS2 or  WSe2 successfully improved the recovery rate of the sensor by 11.87% and 19.44%, respectively, 
whereas the sensitivity remained constant. The proposed approach contributes to improving the performance of gas 
sensors.
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Introduction
Nitrogen dioxide  (NO2) is considered a major pollutant 
affecting the environment and human health [1, 2]. In the 
past few decades, nanomaterials, such as metal oxides 
[3–5], transition metal dichalcogenides (TMDC) [6–8], 
and carbon-based materials [9–12], have been used as 
sensing layers of the chemiresistors to detect  NO2 gas. 
An ideal gas sensor should exhibit high sensitivity, fast 
response, full recovery, and a low detection limit.

Carbon-based materials, such as graphene and car-
bon nanotubes (CNT), have been widely studied owing 
to their excellent electrical conductivity, stability, high 
surface-to-volume ratios, and low toxicity [13–15]. Car-
bon-based  NO2 gas sensors exhibit excellent responses 
to ppb-level  NO2 at room temperature. However, these 

sensors often require prolonged recovery times because 
of the strong bonding between  NO2 molecules and the 
sp2-carbon in carbon-based materials [16, 17], which sig-
nificantly affects the overall performance of the carbon-
based gas sensors.

On the other hand, metal oxide-based  NO2 gas sen-
sors, such as ZnO,  TiO2,  WO3,  In2O3, and  SnO2, offer 
several advantages, including rapid response, high sensi-
tivity, simplicity, and easy synthesis [18–23]. In particu-
lar, ZnO has garnered significant attention owing to its 
stable chemical and physical properties, simple synthe-
sis, cost-effectiveness, and nontoxicity. ZnO has been 
widely employed in the fabrication of gas sensors in vari-
ous forms, including nanowires [24], nanorods [25], and 
nanoflakes [26]. However, the ZnO-based gas sensors 
typically require operating temperatures higher than 
200 °C [16, 27–29].

Gas sensors based on TMDC, such as  MoS2,  WS2, and 
 WSe2, can detect  NO2 and  NH3 gases at room tempera-
ture [30–34] owing to their distinctive layered structures, 
unique photoelectric and charge transfer properties, air 
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stability, and presence of abundant active sites (e.g., sul-
fur vacancies and edge sites) [35–38]. However, low sen-
sitivity, slow response, and poor recovery are the major 
limitations associated with TMDC-based  NO2 gas sen-
sors [39–41].

Chemical doping [42], exposed edge positions [43], 
photoactivation [44], and noble metal/other nanomate-
rial functionalization [45–47] have been employed to 
enhance the sensitivity of sensors. Furthermore, recov-
ery rate, which is one of the critical performance indica-
tors for sensors, needs to be improved. Heterojunctions, 
external light assistance, and high operating tempera-
tures have been reported to improve sensor recovery 
rate [15, 44, 48–50]. Among them, heterojunctions have 
received significant attention because of their energy-
saving capabilities.

In this study, heterojunctions were fabricated to 
improve the recovery of TMDC-based gas sensors. 
The recovery rate of the sensors could be improved by 
approximately 5.72–11.87% and 8.10–19.44% via spray-
coating of a small amount of n-type ZnO nanoparticles 
onto the p-type  MoS2 and  WSe2 nanosheets, respectively.

Results and discussion
The TMDC and diluted ZnO dispersions are successively 
spray-coated onto a  SiO2 wafer with an interdigitated Au 
electrode to form a heterojunction (Fig. 1). We employed 
tip sonication to exfoliate bulk TMDC, transforming 

it into a few-layered structure to increase the surface 
area. Initially, 300 mg of bulk TMDC powder purchased 
from Alfa Aesar was placed into 100  ml of isopropyl 
alcohol (IPA) and subjected to tip sonication for 4  h at 
150  W power. The TMDC-containing beaker remained 
immersed in an ice and water mixture throughout the 
exfoliation process. Subsequently, the exfoliated TMDC 
solution underwent centrifugation at 2000  rpm for 1  h, 
yielding a supernatant enriched with few-layered TMDC. 
The resulting concentrations of the  MoS2 and  WSe2 dis-
persions were 0.06 and 0.075  mg/ml, respectively. The 
ZnO solution purchased from Sigma Aldrich was diluted 
to 0.06  mg/ml. The TMDC/ZnO heterojunction was 
confined to the dimensions of 4.2  mm × 1.85  mm using 
a shadow mask and annealed at 250  °C for 2 h in an Ar 
atmosphere to remove impurities. The finally prepared 
TMDC/ZnO heterojunction sample is shown in Fig. 1c.

Figure 2a, c demonstrate the TMDC nanosheets exfo-
liated through ultrasonic treatment with sizes predomi-
nantly ranging from 100 to 300 nm. These nanosheets are 
uniformly dispersed on a  SiO2 wafer, forming a compact 
and conductive network. The interstitial spaces between 
the TMDC nanosheets facilitate the penetration of  NO2 
gas molecules, thereby leading to an increased number 
of adsorption sites for  NO2 gas. Figure 2b, d demonstrate 
randomly distributed ZnO nanoparticles (30–80 nm) on 
the TMDC nanosheets (indicated by red arrows). The 
SEM images of undiluted ZnO nanoparticles are featured 

Fig. 1 Schematic of TMDC/ZnO-based  NO2 gas sensor fabrication process. (TMDC: transition metal dichalcogenides; IPA: Isopropylalcohol)
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in the inset of Fig. 2b, d. Aggregation of ZnO nanoparti-
cles occurred due to its high concentration. On the other 
hand, we diluted and re-dispersed ZnO nanoparticles for 
sensor fabrication in order to minimize the aggregation 
of nanoparticles. 

As shown in Fig. 3, the Raman spectrum of the TMDC-
based gas sensor excited by a 532 nm laser exhibits promi-
nent peaks of  MoS2 located at 407.41 and 383.4   cm−1. 
These two peaks correspond to the out-of-plane  (A1g) and 
in-plane  (E1

2g) modes of  MoS2. The difference in the posi-
tions of these peaks is ~ 24.01   cm−1, indicating the pres-
ence of a few-layered structure of the  MoS2 [51]. A single 
prominent Raman peak of  WSe2 appears at 254.3   cm−1, 
which can be assigned to the overlapping of  E1

2g and  A1g, 

and indicates a few-layered structure of the  WSe2 [52]. Fur-
thermore, the typical  E2 (high) peak of ZnO is observed 
at 438.2   cm−1 in  MoS2/ZnO and  WSe2/ZnO spectra [53], 
indicating the successful deposition of ZnO nanoparticles 
onto the TMDC nanosheets.

In this work, we used a custom-built gas chamber for 
conducting gas sensing experiments. This chamber is 
seamlessly integrated with both a gas mass flow controller 
and a temperature controller. Throughout the experimen-
tation process, temperature was precisely maintained as 
the sample stage within the gas chamber was consistently 
maintained at 100 °C. To facilitate the experiments, the reg-
ulated flow of  NO2 gas and custom dry air was introduced 
through a mass flow controller. This ensured a steady total 
flow rate of 500 sccm. The I–V curves and resistance meas-
urements of the gas sensor were accurately recorded using 
a Keithley 2634B sourcemeter. The TMDC/ZnO-based 
sensor exhibits a significantly higher resistance than the 
TMDC-based sensor, which can be attributed to the for-
mation of heterojunctions (Fig.  4a, b). Furthermore, the 
addition of ZnO nanoparticles significantly reduces the sig-
nal drift of the TMDC-based sensor, whereas the response 
of the sensor remains unchanged (Fig. 4c). We studied the 
recovery rate of the sensors which can be defined as [54, 
55]:

Recovery Rate =
(I − I10min)

(I − I0)
× 100%

Fig. 2 Scanning electron microscopic images of a  MoS2-, b  MoS2/ZnO-, c  WSe2-, d  WSe2/ZnO-based gas sensors. The red arrow represents the ZnO 
nanoparticles (NP). The insets in b and d show SEM image of undiluted ZnO nanoparticles. The scale bars in the insets are 250 nm

Fig. 3 Raman spectra of the transition metal dichalcogenides 
(TMDC)-based gas sensor (excited by 532 nm laser). Unlike TMDC, 
the TMDC/ZnO sensor exhibits the  E2 (high) characteristic peak 
of ZnO
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while I0 is the initial current of the sensor, I is the cur-
rent generated by the sensor exposed to  NO2 gas, and 
I10min is the current of the sensor after shutting off the 
 NO2 gas for 10  min. Compared with  MoS2 and  WSe2, 

the recovery rates of  MoS2/ZnO and  WSe2/ZnO sensors 
improved by ~ 5.72–11.87% and ~ 8.10–19.44%, respec-
tively (Fig.  4d, e). This is attributed to the variation in 

Fig. 4 I–V characteristics of a  MoS2
-,  MoS2/ZnO-, b  WSe2

- and  WSe2/ZnO-based gas sensor in air environment at 100 °C. c Gas sensing response 
of transition metal dichalcogenides (TMDC)-based gas sensor to 10 ppm  NO2 gas at 100 °C. The part where the conductivity decreased at the early 
stage of  NO2 exposure is outlined by the blue dotted line. d Recovery rate per cycle of  MoS2

- and  MoS2/ZnO-based gas sensor. e Recovery rate 
per cycle of  WSe2

- and  WSe2/ZnO-based gas sensor
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the built-in field inside the heterojunction between the 
n-type ZnO and p-type TMDC.

The electrons of ZnO near the ZnO/TMDC inter-
face tend to diffuse into TMDC, whereas the holes in 
TMDC tend to diffuse into ZnO before the Fermi levels 
of the p-type TMDC and n-type ZnO reach equilibrium 
(Fig. 5a). This leads to the formation of a depletion layer 
on the ZnO surface that gradually generates an internal 
electric field in the ZnO/TMDC interface region The 
internal electric field hinders further diffusion of car-
riers (Fig. 5b). When the sensor is exposed to  NO2 gas, 
the  NO2 molecules first capture electrons from ZnO 
with large adsorption energy and increase the width of 
the built-in electric field, resulting in a decrease in the 
sensor conductivity at the initial stage of  NO2 gas influx 
(the parts inside the blue dotted line in Fig.  4c). As the 
influx of  NO2 gas continues,  NO2 molecules start captur-
ing electrons from the p-type TMDC surface with many 
active sites. The balance of the built-in electric field is 
broken, the holes accumulated at the ZnO side return 
to TMDC, and the width of the built-in electric field 
decreases (Fig. 5c). Furthermore, the desorption of  NO2 
molecules on ZnO with large adsorption energy is slow 
and incomplete when air is introduced. This significantly 
improves the recovery rate of TMDC/ZnO-based gas 
sensors. Nonetheless, incompletely desorbed  NO2 mole-
cules are still present on TMDC. The recovery rate could 
be further improved by employing external light sources 
[56, 57].

Conclusion
In this study, heterojunctions were fabricated via spray-
coating a small amount of n-type ZnO nanoparticles onto 
the p-type TMDC nanosheets. SEM images and Raman 
spectra confirmed the successful deposition of small 
ZnO nanoparticles onto the large TMDC nanosheets. 
Furthermore, the fabricated heterojunction successfully 
improved the recovery rate of  MoS2/ZnO and  WSe2/

ZnO sensors by ~ 5.72–11.87% and ~ 8.10–19.44%, 
respectively. This study is expected to contribute to the 
development of high-performance  NO2 gas sensors.

Abbreviations
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