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Abstract 

Unique self-assembled germanium structures known as Germanium-on-Nothing (GON), which are fabricated 
via annealing, have buried multiscale cavities with different morphologies. Due to their unique sub-surface 
morphologies, GON structures are utilized in various applications including optoelectronics, micro-/nanoelectronics, 
and precision sensors. Each application requires different cavity shapes, and a simulation tool is able to determine the 
required annealing duration for a given shape. However, a theoretical simulation inevitably requires simplifications 
which limit its accuracy. Herein, to resolve such dependence on simplification, we introduce a deep learning-based 
method for simulating the transformation of sub-surface morhpology of GON over annealing. Namely, a deep 
learning model is trained to predict GON’s morphological transformation from 4 cross-sectional images acquired 
at different annealing times. Compared to conventional simulation schemes, our proposed deep learning-based 
simulation method is not only computationally efficient ( ∼ 10 min) but also physically accurate with its use of 
empirical data.
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Introduction
Compared to the widely used lithography-based 
manufacturing scheme which only utilizes the surface 
form factor, the annealing-based silicon-on-nothing 
(SON) [1] and germanium-on-nothing (GON) [2] 
fabrication methodology additionally exploits the 
nanoscale sub-surface components of a semiconductor 
wafer [3, 4]. By annealing straightly etched hole patterns, 
micro to nanoscale buried cavities are acquired without 
a need for a hermetic sealing process. These cavities are 
formed in various morphologies, from circular pipes to 
spheres and plates, depending on the shape of initial hole 
pattern and annealing duration [5]. Such unique product 
is utilized in applications of diverse domains: photonic 

crystals [6], pressure sensors [7, 8], microchannels [9], 
solar cells [2], to name a few.

Each application require different sub-surface 
morphologies for its appropriate employment. Therefore, 
as the vertically-etched initial structure transforms into 
circular pipes, spheres, and finally into plates, annealing 
must be ceased at the exact moment when a desired 
cavity morphology is formed. Instead of straightforward 
optical wave or diffraction-based inspection procedures 
for surface structures, more elaborate inspection 
methods are required for these buried cavities. Ultrasonic 
atomic force microscopy [10, 11], X-ray scanning [12], 
and optical interferometry [13] are some widely used 
sub-surface imaging techniques that provide a stack of 
2-D profiles. However, these have their own limitations 
of either low throughput or inoperability under extreme 
thermal conditions. On the other hand, simulating the 
transformation of sub-surface morphology would reduce 
the dependency on these in-situ sub-surface imaging 
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process, therefore circumventing their corresponding 
limitations. While phase field modeling, a specific branch 
of finite element method (FEM) for solving interfacial 
problems, is a viable simulation method for GON 
structures, it inevitably incorporates long computational 
period (up to 10  h) depending on the mesh size [14, 
15]. In addition, phase field modeling is solely based on 
calculating surface diffusion phenomenon, therefore not 
taking into account the physical properties of subject 
material [16], such as crystalline direction.

In this letter, we present a fast ( ∼10  min) deep 
learning-based simulation methodology of an annealing-
based fabrication process from empirical data, namely 
cross-sectional images of GONs. The images of 4 
different annealing duration GON structures are 
destructively acquired as training data. Then, based on 
these data at 4 different times, the essential parameters 
of the cavity shape and morphology’s cross-sectional 
images are simulated throughout these 4 time steps. 
Our method requires less than 10  min of training 
and with its use of empirical data in its calculation, 
all physical properties of the simulation subject have 
been thoroughly incorporated to the simulation unlike 
theoretical simulations which require simplifications; for 
example, phase field modeling solely considers surface 
diffusion coefficient for simulating the morphological 
transformation of GON.

Parametrically convolutional Autoencoder (PC‑AE)
Figure 1 denotes the overall workflow of the autoencoder-
based simulation. Autoencoder is a specific branch 
of encoder-decoder architectures that solves F(x) = x, 
namely a model that outputs the identical input data. 
As the name ‘encoder-decoder’ connotes, encoder 
component compresses the input data into a smaller 
size, extracting the input’s essential features in doing 

so. Then, decoder reconstructs the output information 
in a desired domain, which can be either identical or 
disparate compared to the input data. For disparate 
outputs, common applications are scene segmentation 
[17] and depth map extraction [18], where the output 
information is utilized. With identical output, on the 
other hand, either the encoder or decoder is respectively 
utilized to extract important features from inputs or 
reconstruct outputs from arbitrarily given features [19]. 
These encoder-decoder architectures that output the 
same input are named autoencoders, and this work’s 
autoencoder model utilizes the decoder to reconstruct 
cross-sectional images from a single arbitrary feature.

While fully convolutional autoencoders are common 
for image analysis, linear layers are added to this 
work’s model for simulation of not only the cavity 
images but also the essential parameters depicting 
the morphology. Therefore, the model is named a 
‘parametrically convolutional autoencoder’ (PC-
AE). To train the PC-AE, cross-sectional scanning 
electron microscopy (SEM) images of GON structures 
annealed for 5, 15, 60, and 150  min are acquired and 
binarized. The PC-AE symmetrically consist of 6 layers 
of convolutional layers and 4 linear layers for both 
encoder (top row of PC-AE in Fig.  1) and decoder 
(bottom row of PC-AE, boxed in red). The encoder 
compresses the image into a single latent variable, 
which is subsequently reconstructed into 5 parameters 
using the linear layers of decoder. From these 5 
parameters, the original input image is reconstructed 
using the convolutional layers of decoder. PC-AE’s 
components with orange background is initially 
trained to output the 5 essential parameters that 
depict the morphology of input image, denoted as 
parameter training. Then, while these layers are 
frozen, the remaining decoder’s convolutional layers 

Fig. 1 Pipeline of the deep learning-based sub-surface morphology transformation simulation. The binarized SEM images of GON cross-sections 
are used as training data, and the deep learning architecture is trained to encode the images into single latent variable and reconstruct it into 
original images. The pink segment of the entire model is initially trained for parameter training, followed by selective training of green segment for 
the convolutional reconstruction of original training images
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with green background is solely trained to reconstruct 
the original images from the 5 parameters, named 
as reconstruction training. After both trainings, the 
latent variable input for decoder model is iterated to 
simulate the parameters and sub-surface image. Adam 
optimizer was used for parameter and reconstruction 
training with learning rate of 0.001, both aiming 
to reduce the training loss as mean squared error 
between labels and reconstructed parameters or 
images without validation data. A GTX 1660 Super 
GPU has been used to train the deep learning model 
with TensorFlow library.

Germanium‑on‑Nothing fabrication
Vertical and circular holes are patterned via deep 
reactive ion etching on the surface of a prime-grade 
Czochralski (100) germanium wafer. The diameter and 
spacing of the hole patterns are respectively 1.2 µm and 
0.8 µm . After removal of organic matters on the surface 
via diluted ammonia solution ( NH4OH : H2O = 1 : 4 
in volume), the wafer is annealed in vacuum (2 ×10−6 
Torr) furnace at 890 ◦C with ramping rate of 25 ◦C/min . 
Annealing promotes reduction in surface energy, thereby 
accelerating the surface diffusion to transform the 
vertically etched holes.

Figure 2 shows the morphological transformation of 
GON structures during annealing. At 5  min, the top 
surface of initial vertical holes is closed to form circular 
pipes. Then, the membrane walls between the pipes 
are thinned as the vertical height reduces, forming into 
sphere-like cavities. Eventually, the individual cavities 
are merged to form a horizontal plate, and further 
annealing smoothens the plate’s surface roughness. 
The red alphabets in 5 min image denote the essential 
parameters that characterize the cavity’s morphology: 
period of hole patterns (P), length of holes (L), spacing 
between holes (S), diameter of holes (D), and height of 
roughness (H). Each parameter is normalized by their 

maxima out of the 4 samples from different annealing 
durations.

Results and discussion
Figure 3a shows the training result of initial 6500 epochs 
of parameter training. During the first 500 epochs, 
training loss (mean squared error) between the label 
and reconstructed parameter values decreases down 
to 0.001, which bears about 5 ∼ 10% prediction error. 
Training loss less than 0.001 is considered valid from 
empirical inspection, highlighted in blue. As training loss 
decreases, the R2 value of the exponential fitting between 
encoded variables and annealing duration of each variable 
increases up to maximal value of 0.99956 at epoch 6316. 
Indeed, as the model learns to reconstruct the essential 
parameters for each annealing time, it simultaneously 
learns the temporal correlation incorporated in the input 
data even without providing any temporal information 
as training data. The 6500 epochs of training have taken 
about 10  min, which is a fast computation considering 
that a FEM-based phase field modeling requires up to 
several hours depending on the mesh size. Another main 
advantage of this work’s deep learning approach is the use 
of empirical data. Theoretical simulation such as a FEM-
based phase field modeling incorporates simplifications, 
namely only considering surface diffusion coefficient 
when modeling the morphological transformation. On 
the other hand, a deep learning model’s use of empirical 
data automatically incorporates the detailed physical 
nature such as crystalline direction.

While we have sampled our training data at 4 
annealing times to train the model, each at 5, 15, 60, 
and 150  min, the number of training data required for 
a successful simulation will depend on the complexity 
of the phenomenon. The non-linear morphological 
transformation needs to be characterized by the training 
data for an accurate simulation after training. For the 
transformation of GON’s subsurface morphology, our 
training data describes the initial individual cavities 

Fig. 2 Cross-sectional SEM images of GON used as training data. Cross-sections are analyzed via destructive test at four different annealing times: 5, 
15, 60, and 150 min Red lines on the 5 min image denote the essential parameters extracted from the sub-surface morphology
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(5 and 15 min) to a single merged cavity (60 min) 
and finally the flattened cavity (150 min). Simulation 
after training is based on these characterization of the 
essential morphologies during the transformation. 
For application in a different domain, training data 
would need to be selected in a similar fashion, with 
consideration of the morphological complexity and  its 
overall characterization by the training data.

The training iteration with maximal R2 value was 
chosen for parameter simulation. While fluctuation of 
loss value due to the randomness incorporated in deep 
learning model’s optimization process is observed during 
training around 4000 epochs, the model soon converges 
to the minimal error, signifying that the model has 
recovered from the fluctuation and is properly trained. 
The maximal R2 is acquired after the fluctuation. Based on 
the model’s competence in understanding the temporal 
correlation of input images as proven by the high R2 
value, the 5 essential parameters are simulated between 
5 and 150 min of annealing as shown in Fig. 3b. One key 
parameter that is correlated to an insightful observation 
of GON transformation phenomenon is the spacing (S) 
between individual cavities. The main determinant to 
a successful employment of GON structure in varied 
applications is its appropriate form factor, generally 
divided as individual or merged cavities. The spacing 
parameter S precisely describes this disparity. Individual 
cavities are developed until parameter S reaches zero 
at 40  min, and a merged plate-like cavity is formed 
after 40  min. The parametric simulation has specifically 

characterized the moment when a phenomenon of 
interest occurs.

Figure  4a shows the subsequent reconstruction 
training results. The model is trained to reconstruct 
cross-sectional morphology from the 5 parameters 
for 1000 epochs, during which mean squared error 
between label and predicted morphology decreases 
down to 0.01. Compared to parameter training that was 
trained for longer epochs, reconstruction training was 
only proceeded for 1000 epochs to prevent overfitting. 
A generalized understanding of the training data is 
crucial to achieving an accurate simulation, and error 
value of 0.01 has been empirically determined as the 
appropriate magnitude that simulates the morphological 
transformation without overfitting. Further training 
below error value of 0.01 was more prone to constructing 
physically unnatural morphological transformation. The 
improvement in quality of model’s reconstructions over 
training is shown in Fig. 4b.

A full simulation after both training stages is shown 
in Fig.  5. Images at 8 different times are sampled from 
the exponentially fitted function between the encoded 
training data and their corresponding annealing time. 
4 iterations (a, c, f, and h) are sampled from the region 
of training data, and the other 4 (b, d, e, and g) are 
sampled between the training data where morphological 
transformation could be most adequately portrayed. As 
shown in the reconstructed images, transformation of 
both sub-surface cavities and membrane’s top surface 
roughness are accurately simulated. The simulated sub-
surface morphologies show a reasonable transformation 

Fig. 3 a Parameter training result. As mean squared error decreases, the R2 value of the fitting between latent variable and annealing time 
increases. Maximum R2 value of 0.99956 is acquired at epoch 6318, from which subsequent reconstruction training has been followed. Mean 
squared error less than 0.005 is considered valid. b Simulated parameters after the initial parameter training, with selection of maximum R2 value. 
Five parameters are simulated based on the labels at four different times: 5, 15, 60, and 150 min
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from vertical circular pipes to a merged plate (a-d) 
and the subsequent flattening process (e-h). Note that 
iteration ‘d’ of Fig.  5 is simulated at 40  min when the 
spacing parameter S reached zero. Indeed, the individual 
cavities are initiated to merge into a single plate-like 
cavity. At this point, the sinusoidal roughness of the 
merged cavity’s top and bottom surfaces is analogous to 
the sinusoidal roughness patterns of individual cavities in 
iteration C. Further annealing flattens out both top and 
bottom surfaces of the plate cavity, gradually increasing 
the period of the sinusoidal pattern. Such increase 
in period is also depicted by parameter simulation. 
Magnitude of Fig. 3b’s purple line increases with longer 
annealing time, a trend that the decoder’s convolutional 
layers have learned to reconstruct the 2D morphologies 
of flattening cavity surfaces. In terms of membrane 
membrane’s top surface, the initially sinusoidal roughness 
flattens out over annealing, with its increase in sinusoidal 

period analogous to that of the cavity’s surface roughness. 
Overall, the PC-AE model accurately simulated the 
surface and sub-surface morphologies as interpreted in 
this paragraph. Additional file  1: Video S1 contains the 
resulting simulation by visualizing these reconstructed 
surfaces in a continuous manner.

Conclusion
In this letter, we present a deep learning-based 
methodology for simulation of 2D morphological 
transformation of GON structures during annealing 
fabrication. 5 parameters that denote GON’s sub-surface 
morphology has been simulated, from which cross-
sectional images of morphology has been additional 
simulated. With deep learning, our empirical data-based 
simulation incorporates all physical properties related to 
the phenomenon in a simple fashion, unlike a theoretical 
simulation which inevitably incorporates simplifications 

Fig. 4 a Reconstruction training result. b Comparison of training label reconstructions at three different loss values during training. Training data is 
accurately reconstructed with longer training

Fig. 5 Simulated sub-surface morphology from the subsequent reconstruction training. Cross-sectional images of sub-surface morphology are 
simulated based on the same four times: 5, 15, 60, and 150 min, denoted as red boxes (a, c, f, h). From their exponential fitting between latent value 
and annealing time, four latent values denoted by blue squares are for their reconstructions (b, d, e, g)
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such as only considering surface diffusion coefficient. The 
proposed empirical data-based simulation scheme could 
be widely utilized for various dynamic manufacturing 
techniques, for example thermal oxidation or etching.
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