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Abstract 

Neural interfaces are fundamental tools for transmitting information from the nervous system. Research on the 
immune response of an invasive neural interface is a field that requires continuous effort. Various efforts have been 
made to overcome or minimize limitations through modifying the designs and materials of neural interfaces, modify‑
ing surface characteristics, and adding functions to them. In this study, we demonstrate microfluidic channels with 
crater‑shaped structures fabricated using parylene‑C membranes for fluid delivery from the perspective of theory, 
design, and simulation. The simulation results indicated that the fluid flow depended on the size of the outlet and the 
alignment of microstructures inside the fluidic channel. All the results can be used to support the design of microflu‑
idic channels made by membranes for drug delivery.
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Introduction
About a decade ago, massive projects to unravel the 
mechanism and function of the human brain started, 
such as the Human Brain Project, BRAIN Initiative, and 
Brain/MIND (Brain Mapping by Integrated Neurotech-
nologies for Disease Studies), and remarkable research 
progress has been achieved in neuroscience, medicine, 
and information and communications technology (ICT)-
based scientific research [1–4]. Those research initiatives 
have also led to advances in neural interfaces, which is an 
essential tool for discovering the brain’s mystery [5]. Non-
invasive or invasive tools capable of the precise recording 
of neural signals have been developed [6]. Among them, 
invasive neural interfaces are promising tools because of 
their ability to collect more sophisticated and direct elec-
trophysiological data [5]. Silicon-based invasive neural 
interfaces have been widely used, and their performance 

has been proven in many studies [7–10]. However, long-
lasting integration of invasive neural interfaces with the 
neural tissue is the most challenging issue to be addressed 
at present [11]. Various efforts have been made to over-
come the immune response induced by the implantation 
of neural interfaces, such as modifying the designs and 
materials of neural interfaces, modifying surface charac-
teristics, and adding functions to them [12, 13]. In par-
ticular, direct injection of anti-inflammatory reagents to 
the brain can minimize the effect of the blood–brain bar-
rier (BBB) and blood–cerebrospinal fluid barrier (BCB) 
[14]. Microfluidic channels integrated with a neural 
interface enable precise and stable delivery of even a min-
imal amount of drugs for reducing immune responses or 
providing chemical stimulation [15]. In a previous study, 
we developed a microfluidic flexible interconnection 
cable (μFIC) that delivers a fluid to the 3D-shaped elec-
trodes of the flexible penetrating microelectrode array 
(FPMA) [8]. Drug delivery through microfluidic channels 
is expected to improve chronic implantation reliability, 
as it can deliver anti-inflammatory drugs precisely to the 
implanted tissue.
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In this study, we investigated the effects of the design of 
the microfluidic channel formed inside the μFIC on the 
fluid velocity at the outlet of the microfluidic channel. We 
simulated the fluid flow according to the inlet pressure 
and the additional structures formed inside the microflu-
idic channel, depending on the size and arrangement of 
these additional structures.

Methodology
Simulation of microfluidic flexible interconnection cable
The most basic structure of microfluidic channels is a 
narrow and long passage for a fluid to flow [16]. The 
microfluidic channel proposed in this study was a sin-
gle channel with multiple crater-shaped structures 
when viewed from the top, which can be described as 
pillars when viewed from the inside of the microflu-
idic channel. Figure  1a shows a schematic diagram of 
the μFIC integrated with a microfluidic channel inside. 
The microfluidic channel consisted of an inlet under 
the reservoir and an outlet on the side of the elec-
trode pads. As the proposed microfluidic channel was 
made of two layers of thin membranes, it was difficult 
to maintain the shape of the channel unblocked. How-
ever, the crater-shaped structures were advantageous in 
maintaining the shape of the fluidic channel unblocked 
because these structures supported the upper layer of 
the channel to prevent its collapse. Figure  1b shows 
the top and cross-sectional views of the microfluidic 
channel. The actual shape of the microfluidic channel 
was an arch with a large radius of curvature, as shown 
in Fig.  1b. However, the simulation model was simpli-
fied from crater-shaped structures to circles to achieve 
a concise and fast result. The radius and arrangement 

of the crater-shaped structures were considered to 
be essential modeling parameters of the microfluidic 
channel because these can regulate the volume and flow 
velocity of the fluid that is contained in the channel. As 
for alignment, the first simulation model had an inline 
channel, which is rows of crater-shaped structures in 
the microfluidic channel, while the second model had 
a zigzag channel, which is crater-shaped structures 
arranged in a staggered position.

Static analysis with laminar flow interface in COM-
SOL  Multiphysics® was used to simulate the flow veloc-
ity and pressure field. Two alignments with different 
radii of crater-shaped structures were used for the 
geometry of the device. The working fluid was assumed 
to be water for simplified simulations. The governing 
equations for incompressible liquid flow were the con-
tinuity equation and the Navier–Stokes equation, as 
shown below. Each represents the conservation of mass 
and momentum.

where u is the fluid velocity vector, p is the pressure, 
I is the unit diagonal matrix, and F  represents the vol-
ume force vector. No slip condition, that is, the fluid at 
the wall is not moving, was used for the boundary condi-
tions. Also, the initial inlet pressure was assumed to be 
the hydrostatic pressure of the reservoir. As the reservoir 
was coated with a hydrophobic material (Parylene-C), the 
internal surface tension of the reservoir was neglected. 
The pressure at the outlet was set to zero.

(1)ρ∇ · (u) = 0

(2)∇ ·

[

−pI+ µ(∇u+ (∇u))T
]

+ F = ρ(u · ∇)u

Fig. 1 Schematic diagram of a microfluidic flexible interconnection cable (μFIC). a Full conceptual image of the μFIC. The fluid in the reservoir flows 
to the inlet of the μFIC. The microfluidic channel has crater‑shaped structures. b Top view (left) and cross‑sectional view (right) of the μFIC
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Fabrication of the microfluidic flexible interconnection 
cable
The microfluidic flexible interconnection cable was fab-
ricated based on parylene-C, a biocompatible and highly 
flexible material. Ti as a sacrificial layer in a thickness 
of 200  nm and the first parylene-C layer in a thickness 
of 3  µm were sequentially deposited on the substrate. 
An adhesive layer (Cr) and conductive metal (Au) were 
sputtered in thickness of 25/200  nm, and then conduc-
tive lines were patterned through photolithography. 
The second parylene-C layer was deposited to insulate 
the conductive lines in a thickness of 3  µm. To fabri-
cate the microfluidic channel, a 40 µm thick photoresist 
(PR,  AZ®40XT, Microshemicals, UIm, Germany) was 
patterned on the second parylene-C layer, the final par-
ylene-C layer was deposited in a thickness of 6 µm. The 
electrode pads, the inlet, and the outlet of the micro-
fluidic channel were opened by oxygen plasma etch-
ing. Finally, µFICs were floated from the substrate by Ti 
etchant, and µFICs were soaked in acetone to remove 

the PR pattern. The microfluidic channel was formed 
in the space where the photoresist structures had been 
removed. Crater-shaped structures were formed on the 
concave patterns of the photoresist (Fig. 2).

Results and discussion
Analysis of fluid flow through the microfluidic channel
We assumed that the radius of the crater-shaped struc-
tures is constant to simplify the simulation. Simulations 
were performed on the plain channel with no crater-
shaped structures as a reference and two modified flu-
idic channels with crater-shaped structures. The length 
of the channel was approximately 14 mm and the width 
was 3 mm. The width of the channel near the outlet was 
160  µm. The radii of the outlet (r) and crater-shaped 
structures (R) were changed to investigate the effects of 
each on the fluid flow at the outlet. Three different radii 
(r = 0.22, 0.1, and 0.15 mm) for the outlet and six differ-
ent radii (R = 0.1, 0.12, 0.14, 0.15, 0.16, and 0.18  mm) 
for the crater-shaped structures were simulated. The 

Fig. 2 Fabrication processes of a parylene‑C‑based μFIC. a–f MEMS techniques including sputtering, photolithography, deposition, and dry etching 
were used for fabrication
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simulation results demonstrate that near the outlet, the 
pressure was relatively low and the velocity was concen-
trated. Figure  3 shows the representative pressure field 
and velocity magnitude of the microfluidic channel with 
r = 0.02 mm and R = 0.18 mm. In the plain channel with 
no pillars, the average velocity was 111.44 mm/s, and the 
maximum velocity near the outlet was 142.32 mm/s. The 
average velocity in the inline channel was 7.19 mm/s, and 
in the zigzag channel, it was 9.85 mm/s.

The flow rate was calculated based on the simulation 
results. The average flow rates in the plain channel, the 
inline channel, and the zigzag channel were 8.40 µL/min, 
0.54 µL/min, and 0.74 µL/min, respectively. Compar-
ing Fig.  3d, e, f, the velocity of the fluid near the outlet 
was clearly changed. The velocity magnitude in the zig-
zag channel was slightly increased due to the position of 
the structures. Figure 4 shows the flow rate at the outlet 
according to the radius of the outlet and the inner pil-
lar structures, with a constrained size of the outlet. The 
initial input pressure was calculated by the dimension of 
the reservoir, resulting in a value of about 80 kPa, indicat-
ing a state of a filled reservoir. As the fluid in the reser-
voir flowed out, the input pressure was also reduced. The 

flow rate of the plain channel was significantly different 
from that of the microfluidic channels with inner struc-
tures. Also, the results show that the flow rate was slow at 
the smaller outlet (Fig. 4a–c). For the outlet with radii of 
0.1 mm and 0.15 mm, the results were similar. However, 
when the radius of the outlet was 0.02 mm, there was a 
big difference in the resultant flow rate. In our study, a 
neural interface is designed to be implanted in rodents, 
mainly Sprague–Dawley rats, to verify the device. The 
total volume of cerebrospinal fluid (CSF) in adult SD 
rats is about 400 µL [17]. And reproduction rate of CSF 
is 1.4 to 3.38 µL/min [17, 18]. The desired design val-
ues take into account the reproduction rate of CSF. The 
outlet radius of 0.02 mm seems too small flow rate, and 
0.15  mm is too large. The outlet size of 0.1  mm is esti-
mated as most appropriate. Moreover, the plain channel 
and inline channel are vulnerable to bending and folding.

Fabrication of the microfluidic flexible interconnection 
cable
The microfluidic flexible interconnection cable was fab-
ricated based on the simulation results. The zigzag chan-
nel was adopted, and the radius of the outlet was 0.1 mm. 

Fig. 3 Simulated results of the pressure and velocity of the fluid flow in the μFIC. a, d The pressure and velocity of the fluid flow in the microfluidic 
channel without inner structures. b, e) The channel with crater‑shaped structures positioned inline and c, f the channel with crater‑shaped 
structures positioned in a zigzag fashion
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The pattern and size of the outlet followed the simula-
tion results. In the simulation, the radius of 0.18  mm 
of the crater-shaped structure was the best choice. 
The acceptable input pressure is approximately 30  Pa. 
However, structures with a radius of 0.1  mm were fab-
ricated considering the contained volume of the micro-
fluidic channel. The fabricated μFIC is shown in Fig.  5. 
The crater-shaped structures were formed using the PR 
reflow technique [19]. Figure 5 shows the optical images 
and scanning electron microscope (SEM) images before 
(Fig.  5a, b) and after the PR reflow process (Fig.  5d, e). 
The PR pattern was smoothed after the thermal treat-
ment. The crater-shaped structures were formed, and 
then the shape was confirmed using the surface profile 
measurement (Fig.  5c, f ). A rounded edge was consid-
ered more advantageous for membrane deposition and 
fluid flow than sharp edges. Figure 5g, h show the opti-
cal images of the fabricated µFIC with crater-shaped 

structures. The channel was fabricated by parylene-C lay-
ers so that it is transparent. Multiple conductive lines for 
the transmission of neural signals were located under the 
microfluidic channel.

Conclusions
We simulated the microfluidic flexible interconnection 
cable with different channel designs in terms of fluid 
flow characteristics using COMSOL  Multiphysics®. 
The smaller outlet and larger inner structures tended to 
reduce the flow rate. The larger inner structures, how-
ever, reduced the fluid volume that can be contained 
in the microfluidic channel, which imposes a trade-off 
relation. Therefore, an appropriate design of the chan-
nel should be derived according to the application. For 
drug delivery to rodent brains, an acceptable flow rate 
range is up to 3.38 μL/min [18, 20]. The final design of 
the microfluidic channel was chosen to satisfy this flow 

Fig. 4 Simulated results of flow rate at the outlet in microfluidic channel designs. a–c The flow rates with different radii of crater‑shaped structures 
(R) at a fixed radius of the outlet (r). d The average flow rate of the fluid decreases according to the increased radius of the crater‑shaped structures
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rate, considering the volume that can be contained in 
the fluidic channel. Although the average velocity in the 
inline channel was slower than in the zigzag channel, 
the zigzag channel was more robust in maintaining its 
shape when the μFIC was bent or folded. Therefore, the 
zigzag channel was finally adopted and fabricated. The 
dimension of the outlet and the crater-shaped structure 
was based on the simulation results. In addition, exter-
nal pressure was considered. In this study, we fabricated 
the microfluidic flexible interconnection cable with 
the outlet and crater of 0.1 mm radius and the crater-
shaped structures with a radius of 0.1 mm. The device 
was fabricated with a larger flow rate than the simula-
tion result because of considering the external pres-
sure in the brain. The simulated data and the fabricated 

μFIC are expected to be valuable tools for drug deliv-
ery to neural interfacing devices. Based on the result of 
this study, anti-inflammatory drugs are expected to be 
delivered effectively, and as a result, drug delivery by 
microfluidic flexible interconnection cable would con-
tribute to extending the lifespan of implantable neural 
interfaces.
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